Coal Geology & Exploration
Abstract
In order to solve the problem of poor imaging effect of near surface karst cave and goaf location seismic data in seismic exploration, this paper summarizes the frequency, energy and signal-to-noise ratio characteristics of seismic data in this area using forward modeling combined with actual data analysis. On this basis, a set of corresponding processing methods are proposed, including micro log constrained tomography static correction, weak signal extraction and compensation, pre-stack five dimensional data regularization and structure constrained grid tomography velocity modeling. Through the application in Nanchuan area, the signal-to-noise ratio and wave group continuity of seismic data are obviously improved. It is proved that this method can effectively improve the quality of seismic data of karst caves and goafs in seismic exploration.
Keywords
karst cave and goaf, micro-log constrained tomography, weak signal extraction and compensation, pre-stack five dimensional data regularization, structure constrained grid tomography
DOI
10.3969/j.issn.1001-1986.2021.03.026
Recommended Citation
MENG Qingli, REN Junxing, YANG Fan,
et al.
(2021)
"Targeted processing method for seismic data of karst caves and goafs in Nanchuan Area,"
Coal Geology & Exploration: Vol. 49:
Iss.
3, Article 27.
DOI: 10.3969/j.issn.1001-1986.2021.03.026
Available at:
https://cge.researchcommons.org/journal/vol49/iss3/27
Reference
[1] 刘斌,宋智强,段卫星,等. 地震勘探观测系统成像效果量化分析[J]. 石油地球物理勘探,2015,50(2):207-212. LIU Bin,SONG Zhiqiang,DUAN Weixing,et al. Seismic acquisition geometry quantitative analysis for prestack data imaging quality[J]. Oil Geophysical Prospecting,2015,50(2):207-212.
[2] 蒋波. 地震资料重处理的方法技术[J]. 石油物探,2020,59(4):551-563. JIANG Bo. Seismic data reprocessing[J]. Geophysical Prospecting for Petroleum,2020,59(4):551-563.
[3] 陈小春,陈辉,喻勤,等. 反假频POCS数据规则化及其在偏移成像中的应用[J]. 石油地球物理勘探,2017,52(1):13-19. CHEN Xiaochun,CHEN Hui,YU Qin,et al. Seismic data interpolation with anti-aliasing POCS method and its application in seismic migration imaging[J]. Oil Geophysical Prospecting,2017,52(1):13-19.
[4] 蔡存军,毛锐强,彭志文,等. 低信噪比地震资料初至自动拾取技术[J]. 石油物探,2020,59(4):517-529. CAI Cunjun,MAO Ruiqiang,PENG Zhiwen,et al. Automatic first-arrival picking from seismic data with low signal-to-noise ratio[J]. Geophysical Prospecting for Petroleum,2020,59(4):517-529.
[5] 陈志德,王成,刘国友,等. 近地表Q值模型建立方法及其地震叠前补偿应用[J]. 石油学报,2015,36(2):188-196. CHEN Zhide,WANG Cheng,LIU Guoyou,et al. Modeling method of near-surface Q value and its seismic pre-stack compensation application[J]. Acta Petrolei Sinica,2015,36(2):188-196.
[6] 徐晓萌,吕平洋,王菲茵,等. 基于WPT-LMD预处理的震动信号有效辨识方法研究[J]. 中国煤炭,2016,42(3):37-42. XU Xiaomeng,LYU Pingyang,WANG Feiyin,et al. Study on effective seismic signals identification method based on WPT-LMD preprocessing method[J]. China Coal,2016,42(3):37-42.
[7] 张宇,闫更平,王林,等. 塔中M工区低信噪比地震资料处理技术对策[J]. 油气藏评价与开发,2017,7(1):14-19. ZHANG Yu,YAN Gengping,WANG Lin,et al. Treatment technologies and countermeasure of low signal-to-noise ratio seismic data in M block of mid-Tarim area[J]. Reservoir Evaluation and Development,2017,7(1):14-19.
[8] 石颖,张振,王建民,等. 地震数据反假频规则化方法研究[J]. 地球物理学进展,2013,28(1):250-256. SHI Ying,ZHANG Zhen,WANG Jianmin,et al. Investigation on de-alias regularization approach for seismic data[J]. Progress in Geophysics,2013,28(1):250-256.
[9] 崔永福,苗青,党青宁,等. 基于OMP算法五维数据规则化技术[J]. 物探化探计算技术,2016,38(1):67-73. CUI Yongfu,MIAO Qing,DANG Qingning,et al. 5D regularization processing based on OMP arithmetic in seismic data[J]. Computing Techniques for Geophysical and Geochemical Exploration,2016,38(1):67-73.
[10] 段文胜,王鹏,党青宁,等. 应用匹配追踪傅里叶插值技术实现OVT域连片处理[J]. 石油地球物理勘探,2017,52(4):669-677. DUAN Wensheng,WANG Peng,DANG Qingning,et al. 5D data regularization based on matching pursuit Fourier interpolation for the OVT domain data merging processing[J]. Oil Geophysical Prospecting,2017,52(4):669-677.
[11] 孟凡顺,杨兴,张生,等. RVSP层析成像初始速度模型的自动建立[J]. 工程地球物理学报,2013,10(2):236-241. MENG Fanshun,YANG Xing,ZHANG Sheng,et al. The automatically produced initial velocity model of RVSP tomography[J]. Chinese Journal of Engineering Geophysics,2013,10(2):236-241.
[12] 袁刚,冯心远,蒋波,等. 约束层析反演及其在地震速度计算中的应用[J]. 石油物探,2013,52(1):55-59. YUAN Gang,FENG Xinyuan,JIANG Bo,et al. Constrained tomography inversion and its application in seismic velocity computation[J]. Geophysical Prospecting for Petroleum,2013,52(1):55-59.
[13] 李振春. 地震偏移成像技术研究现状与发展趋势[J]. 石油地球物理勘探,2014,49(1):1-21. LI Zhenchun. Research status and development trends for seismic migration technology[J]. Oil Geophysical Prospecting,2014,49(1):1-21.
[14] 秦宁,李振春,杨晓东,等. 自动拾取的成像空间域走时层析速度反演[J]. 石油地球物理勘探,2012,47(3):392-398. QIN Ning,LI Zhenchun,YANG Xiaodong,et al. Image domain travel-time tomography velocity inversion based on automatic picking[J]. Oil Geophysical Prospecting,2012,47(3):392-398.
[15] 罗勇,张龙,马俊彦,等. 复杂构造地震叠前深度偏移速度模型构建及效果[J]. 新疆石油地质,2013,34(5):576-579. LUO Yong,ZHANG Long,MA Junyan,et al. The prestack depth migration velocity model for complex geological structure in southern margin of Junggar basin:Modeling and effect[J]. Xinjiang Petroleum Geology,2013,34(5):576-579.
[16] 张在金,陈可洋,范兴才,等. 井控与构造约束条件下的网格层析速度建模技术及应用[J]. 石油物探,2020,59(2):208-217. ZHANG Zaijin,CHEN Keyang,FAN Xingcai,et al. Seismic wave velocity modelling through grid tomography inversion constrained by well logging and structural modeling[J]. Geophysical Prospecting for Petroleum,2020,59(2):208-217.
[17] 何星辰. 网格层析速度建模技术在苏北某区块的应用[J]. 石化技术,2018,25(10):65-66. HE Xingchen. Application of grid tomography modeling technology in a block in northern Jiangsu[J]. Petrochemical Industry Technology,2018,25(10):65-66.
[18] 黄鹏,殷厚成,薛维忠,等. 山前带复杂浅表层建模研究[J]. 石油物探,2019,58(6):837-845. HUANG Peng,YIN Houcheng,XUE Weizhong,et al. Modeling of complex near-surface in piedmont zone[J]. Geophysical Prospecting for Petroleum,2019,58(6):837-845.
[19] 马彦彦,李国发,张星宇,等. 叠前深度偏移速度建模方法分析[J]. 石油地球物理勘探,2014,49(4):687-693. MA Yanyan,LI Guofa,ZHANG Xingyu,et al. Strategy of velocity model building in prestack depth migration[J]. Oil Geophysical Prospecting,2014,49(4):687-693.
[20] ZHANG Xuande,FENG Xiangchu,WANG Weiwei,et al. Image denoising via 2D dictionary learning and adaptive hard thresholding[J]. Pattern Recognition Letters,2013,34(16):2110-2117.
[21] GALIANA-MERINO J J,ROSA-HERRANZ J L,ROSA-CINTAS S,et al. Seismic Wave Tool:Continuous and discrete wavelet analysis and filtering for multichannel seismic data[J]. Computer Physics Communications,2013,184(1):162-171.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons