•  
  •  
 

Coal Geology & Exploration

Abstract

Coal-based CO2 geological storage is an important way to reduce greenhouse gas emissions, but there is also a safety risk of underground CO2 leakage. In order to evaluate the safety of coal-based CO2 geological storage, the roof samples of No.3 coal seam in Hudi Coal Mine, southern Qinshui Basin were collected, and the changes of artificial fracture morphology, whole rock mineral composition and CO2 conductivity of columnar samples in "CO2-H2O-Rock" reaction were studied by simulation experiments. The results show that calcite vein dissolution, secondary mineral filling and external effective stress jointly affect the fracture conductivity. For the low permeability samples with original permeability of 0.016×10–3μm2, calcite vein dissolution leads to the increase of permeability in the early stage of the experiment. As the reaction proceeds, the fracture is closed under the guidance of effective stress, and the permeability increases first and then decreases. For the high permeability samples with original permeability of 3.785×10–3μm2, H2CO3 continuously dissolves feldspar and other minerals on the fracture wall, producing kaolinite and other secondary minerals to fill the fracture, so that the permeability continuous to decrease. In the process of CO2 geological storage, high injection pressure leads to artificial roof fracture. After the completion of CO2 injection construction, the fracture conductivity decreases rapidly due to the filling of secondary minerals and the increase of effective stress, therefore, the risk of long-term leakage of CO2 in coal along the roof fracture is relatively low.

Keywords

CO2 geological storage, roof, fracture, conductivity, permeability

DOI

10.3969/j.issn.1001-1986.2021.03.016

Reference

[1] LI Qi,LIU Guizhen,CAI Bofeng,et al. Public awareness of the environmental impact and management of carbon dioxide capture,utilization and storage technology:The views of educated people in China[J]. Clean Technologies and Environmental Policy,2017,19(8):2041-2056.

[2] 范晶晶. 煤层CO2封存影响因素及数值模拟研究[D]. 北京:中国矿业大学(北京),2018. FAN Jingjing. Research on the influence factors of CO2 sequestration in coal seams and numerical simulation of CO2 sequestration process[D]. Beijing:China University of Mining and Technology(Beijing),2018.

[3] 郭辉,李想,曾云,等. CO2驱提高煤层气开采效果注入参数的实验研究[J]. 当代化工,2016,45(11):2585-2588. GUO Hui,LI Xiang,ZENG Yun,et al. Experimental study on injection parameters for CO2 flooding to enhance the recovery of coal bed methane extraction[J]. Contemporary Chemical Industry,2016,45(11):2585-2588.

[4] 喻英,李义连,杨国栋,等. 储层物性参数对CO2长期封存能力的影响研究[J]. 安全与环境工程,2017,24(5):75-83. YU Ying,LI Yilian,YANG Guodong,et al. Influence of reservoir physical parameters on the long-term CO2 storage capacity[J]. Safety and Environmental Engineering,2017,24(5):75-83.

[5] 金超,曾荣树,田兴有. 松辽盆地南部保康体系上白垩统CO2埋存条件与潜力[J]. 地球科学(中国地质大学学报),2013,38(6):1229-1239.JIN Chao,ZENG Rongshu,TIAN Xingyou. CO2 storage conditions and capacity of Upper Cretaceous Series in Baokang sedimentary system in the southwest of Songliao Basin[J]. Earth Science(Journal of China University of Geosciences),2013,38(6):1229-1239.

[6] LI Zhaowen,DONG Mingzhe,LI Shuliang,et al. CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity[J]. Energy Conversion and Management,2006,47(11/12):1372-1382.

[7] 孔维钟,白冰,李小春. CO2咸水层封存中组合盖层密封效果的影响因素[J]. 交通科学与工程,2015,31(3):53-60. KONG Weizhong,BAI Bing,LI Xiaochun. Factors of sealing efficiency of combined caprocks for CO2 storage in saline aquifer[J]. Journal of Transport Science and Engineering,2015,31(3):53-60.

[8] 韩学婷,张兵,叶建平. 煤层气藏CO2-ECBM注入过程中CO2相态变化分析及应用:以沁水盆地柿庄北区块为例[J]. 非常规油气,2018,5(1):80-85. HAN Xueting,ZHANG Bing,YE Jianping. Analysis and application of CO2 phase change during CO2-ECBM injection in CBM[J]. Unconventional Oil & Gas,2018,5(1):80-85.

[9] 王登科,魏建平,尹光志. 复杂应力路径下含瓦斯煤渗透性变化规律研究[J]. 岩石力学与工程学报,2012,31(2):303-310. WANG Dengke,WEI Jianping,YIN Guangzhi. Investigation on change rule of permeability of coal containing gas under complex stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):303-310.

[10] 许江,曹偈,李波波,等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报,2013,32(2):225-230. XU Jiang,CAO Jie,LI Bobo,et al. Experimental research on response law of permeability of coal to pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):225-230.

[11] 张凤君,王怀远,王广华,等. CO2流体与储层砂岩相互作用机理实验[J]. 吉林大学学报(地球科学版),2012,42(3):821-826. ZHANG Fengjun,WANG Huaiyuan,WANG Guanghua,et al. Experiment on mechanism of CO2 fluid interacting with sandstone layer[J]. Journal of Jilin University(Earth Science Edition),2012,42(3):821-826.

[12] 高玉巧,刘立,曲希玉. CO2与砂岩相互作用机理与形成的自生矿物组合[J]. 新疆石油地质,2007,28(5):579-584. GAO Yuqiao,LIU Li,QU Xiyu. Mechanism of CO2-sandstone interaction and formative authigenic mineral assemblage[J]. Xinjiang Petroleum Geology,2007,28(5):579-584.

[13] 肖娜,李实,林梅钦,等. CO2-水-岩石相互作用对砂岩储集层润湿性影响机理[J]. 新疆石油地质,2017,38(4):460-465. XIAO Na,LI Shi,LIN Meiqin,et al. Influence of CO2-water-rock interactions on wettability of sandstone reservoirs[J]. Xinjiang Petroleum Geology,2017,38(4):460-465.

[14] ZOU Yushi,LI Sihai,MA Xinfang,et al. Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs[J]. Journal of Natural Gas Science and Engineering,2018,49:157-168.

[15] ENICK R M,KLARA S M. CO2 Solubility in water and brine under reservoir conditions[J]. Chemical Engineering Communications,1990,90(1):23-33.

[16] CANTUCCI B,MONTEGROSSI G,VASELLI O,et al. Geochemical modeling of CO2 storage in deep reservoirs:The Weyburn project(Canada) case study[J]. Chemical Geology,2009,265(1/2):181-197.

[17] RAMIRO-RAMIREZ S. Petrographic and petrophysical characterization of the Eagle Ford Shale in La Salle and Gonzales counties,Gulf Coast Region,Texas[D]. Colorado:Colorado School of Mines(Golden),2016.

[18] 李乐,刘爱武,漆智先,等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学,2020,45(2):602-616. LI Le,LIU Aiwu,QI Zhixian,et al. Pore structure characteristics of shale reservoir of the lower Qian 4 member in the Wangchang anticline of the Qianjiang sag[J]. Earth Science,2020,45(2):602-616.

[19] 胡咤咤,黄文辉,刘素平,等. 沁水盆地南部煤储层显微裂隙发育的影响因素[J]. 煤田地质与勘探,2016,44(5):63-70. HU Zhazha,HUANG Wenhui,LIU Suping,et al. Study on the influencing factors of the microfracture development in coal reservoir in southern Qinshui Basin[J]. Coal Geology & Exploration,2016,44(5):63-70.

[20] FU Hongyuan,JIANG Huangbin,QIU Xiang,et al. Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures[J]. Journal of Central South University,2020,27(7):1907-1916.

[21] 刘大锰,周三栋,蔡益栋,等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术,2017,45(6):1-8. LIU Dameng,ZHOU Sandong,CAI Yidong,et al. Study on effect of geo-stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology,2017,45(6):1-8.

[22] PAN Zhejun,YE Jianping,ZHOU Fubao,et al. CO2 storage in coal to enhance coalbed methane recovery:A review of field experiments in China[J]. International Geology Review,2017,60(4):1-23.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.