Coal Geology & Exploration
Abstract
Hydraulic fracturing is currently one of the main technical measures for enhancing coal reservoirs permeability. The spreading range and transportation distance of proppants in the fracture is an important indicator of hydraulic fracturing to evaluate fracturing effect. According to the characteristics of coal reservoirs in Lu’an mining area, physical experiments and numerical simulation methods are used to compare and analyze the effects of fracture conductivity, sand spreading range, particle size combination and other factors on conductivity of coalbed methane wells, and the best proppants particle size and particle size ratio are selected. The research results indicate that the fracture conductivity of proppants decrease with the increasing closure pressure. The length of the coated light ceramsite proppants in the cracks of the sand embankment and sand paving area is nearly twice that of ordinary quartz sand. Among the three sizes of 40-60 mesh, 16-40 mesh, and 12-20 mesh coated lightweight ceramsite, the 12-20 mesh fracturing fracture length, supporting fracture length and average proppants concentration are the smallest, while the conductivity is the highest; when ratio of particle size for 40-60 : 16-40 : 12-20=1 : 6 : 2, the best fracturing range was obtained by using coated lightweight ceramsite with an average fracture length of 320 m, fracture width of 0.672 cm, proppants concentration of 5.16 kg/m2 and fracture conductivity of 1.263.
Keywords
hydrofracture, proppant, particle size ratio, lightweight ceramsite, fracture conductivity
DOI
10.3969/j.issn.1001-1986.2021.02.004
Recommended Citation
CHANG Xiaoliang, LYU Runsheng, WANG Peng,
et al.
(2021)
"Optimization on particle size fraction of lightweight coated ceramsite proppant in coal reservoir,"
Coal Geology & Exploration: Vol. 49:
Iss.
2, Article 5.
DOI: 10.3969/j.issn.1001-1986.2021.02.004
Available at:
https://cge.researchcommons.org/journal/vol49/iss2/5
Reference
[1] 李小刚,舒鸫锟,张平,等. 煤层压裂缝内支撑剂输送物理模拟研究[J]. 油气藏评价与开发,2020,10(4):39-44. LI Xiaogang,SHU Dongkun,ZHANG Ping,et al. Physical simulation of proppant transportation in artificial fractures of coal seam[J]. Reservoir Evaluation and Development,2020,10(4):39-44.
[2] 宋金星,陈培红,王乾. 煤储层水基压裂液用表面活性剂的筛选实验[J]. 煤田地质与勘探,2017,45(6):79-83. SONG Jinxing,CHEN Peihong,WANG Qian. Laboratory study on screening and optimizing surfactant of water-based fracturing fluid for coalbed methane reservoir[J]. Coal Geology & Exploration,2017,45(6):79-83.
[3] 曲占庆,黄德胜,杨阳,等. 沁端区块煤层气井压裂支撑剂优选实验研究[J]. 石油化工高等学校学报,2014,27(4):34-38. QU Zhanqing,HUANG Desheng,YANG Yang,et al. Experimental research of proppant optimization in CBM wells of Qinduan block[J]. Journal of Petrochemical Universities,2014,27(4):34-38.
[4] 张双斌,苏现波,郭红玉. 煤储层水力压裂支撑剂的优选实验研究[J]. 煤田地质与勘探,2016,44(1):51-55. ZHANG Shuangbin,SU Xianbo,GUO Hongyu. Experimental optimization of proppant for hydraulic fracturing in coal reservoir[J]. Coal Geology & Exploration,2016,44(1):51-55.
[5] 程贵生,李丽芳,袁红. 低密度高强度陶粒石油压裂支撑剂的试制[J]. 佛山陶瓷,2019,29(4):5-8. CHENG Guisheng,LI Lihong,YUAN Hong. Preparation of porcelain granule as oil fracturing propping agent with low density and high strength[J]. Foshan Ceramics,2019,29(4):5-8.
[6] 董丙响,蔡景超,李世恒,等. 新型低密度高强度水力压裂支撑剂的研制[J]. 钻井液与完井液,2017,34(2):117-120. DONG Bingxiang,CAI Jingchao,LI Shiheng,et al. Development of a new low density high strength hydraulic fracturing proppant[J]. Drilling Fluid & Completion Fluid,2017,34(2):117-120.
[7] 李小刚,廖梓佳,杨兆中,等. 压裂用低密度支撑剂研究进展和发展趋势[J]. 硅酸盐通报,2018,37(10):3132-3135. LI Xiaogang,LIAO Zijia,YANG Zhaozhong,et al. Development and prospect of fracturing lightweight proppants[J]. Bulletin of the Chinese Ceramic Society,2018,37(10):3132-3135.
[8] 牟佳. 低密度支撑剂在垂直裂缝储层应用的适应性分析[J]. 石油石化节能,2020,10(9):25-26. MU Jia. Discussion on adaptability of low-density proppant in vertical fracture reservoir[J]. Energy Conservation in Petroleum & Petrochemical Industry,2020,10(9):25-26.
[9] 董小丽,潘文启,杨红英,等. 压裂支撑剂性能对导流能力影响室内研究[J]. 石油工业技术监督,2017,33(8):24-27. DONG Xiaoli,PAN Wenqi,YANG Hongying,et al. Laboratory study on effect of fracturing proppant on seepage capacity of fracture[J]. Technology Supervision in Petroleum Industry,2017,33(8):24-27.
[10] 黄炳香,李浩泽,程庆迎,等. 煤层压裂裂缝内支撑剂的压嵌特性[J]. 天然气工业,2019,39(4):48-54. HUANG Bingxiang,LI Haoze,CHENG Qingying,et al. Compaction and embedment characteristics of proppant in hydraulic fractures of coal seams[J]. Natural Gas Industry,2019,39(4):48-54.
[11] 秦梅,郝惠兰,田玉明,等. 基于煤层气井用陶粒支撑剂的制备[J]. 硅酸盐通报,2019,38(10):3355-3359. QIN Mei,HAO Huilan,TIAN Yuming,et al. Preparation of ceramic proppant based on coalbed methane well[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3355-3359.
[12] 曲占庆,王冰,杨阳,等. 基于灰色关联的粒径组合支撑剂导流能力实验[J]. 大庆石油地质与开发,2014,33(2):92-96. QU Zhanqing,WANG Bing,YANG Yang,et al. Experiment on the flow conductivities of the proppants with different size combinations based on the gray correlation analysis[J]. Petroleum Geology and Oilfield Development in Daqing,2014,33(2):92-96.
[13] 沈云琦,李凤霞,张岩,等. 复杂裂缝网络内支撑剂运移及铺置规律分析[J]. 油气地质与采收率,2020,27(5):134-142. SHEN Yunqi,LI Fengxia,ZHANG Yan,et al. Analysis of proppant migration and layout in complex fracture network[J]. Petroleum Geology and Recovery Efficiency,2020,27(5):134-142.
[14] 魏伟. 煤层气压裂用低密度坚果壳支撑剂性能评价与现场试验[J]. 油气藏评价与开发,2020,10(4):93-96. WEI Wei. Performance evaluation and field test of low-density nut shell proppant in CBM fracturing[J]. Reservoir Evaluation and Development,2020,10(4):93-96.
[15] 杨尚谕,杨秀娟,闫相祯,等. 煤层气水力压裂缝内变密度支撑剂运移规律[J]. 煤炭学报,2014,39(12):2459-2465. YANG Shangyu,YANG Xiujuan,YAN Xiangzhen,et al. Variable density proppant placement in CBM wells fractures[J]. Journal of China Coal Society,2014,39(12):2459-2465.
[16] 袁旭,许冬进,陈世海,等. 压裂液侵入对页岩储层导流能力伤害[J]. 科学技术与工程,2020,20(9):3591-3597. YUAN Xu,XU Dongjin,CHEN Shihai,et al. The damage of fracturing fluid intrusion to the conductivity of shale reservoir[J]. Science Technology and Engineering,2020,20(9):3591-3597.
[17] 赵亚兵,周福建,宋梓语,等. 致密砂岩储层支撑剂粒径优选研究[J]. 西安石油大学学报(自然科学版),2018,33(3):57-62. ZHAO Yabing,ZHOU Fujian,SONG Ziyu,et al. Optimization of proppant particle size for tight sandstone reservoir[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2018,33(3):57-62.
[18] 颜世忠. 球形颗粒自由沉降速度的计算方法探讨[J]. 油田地面工程,1988,7(4):20-25. YAN Shizhong. Discussion on calculation method of free setting velocity of spherical particles[J]. Oil-Gas Field Surface Engineering,1988,7(4):20-25.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons