Coal Geology & Exploration
Abstract
In view of the technical requirements of roof water disaster prevention and water resources collaborative protection faced by coal mining in western coal mining area, this paper puts forward a technical idea of roof water loss control based on pre-splitting grouting reformation(P-G) according to the strain strength theory of material mechanics and the statistical results of mining fracture zones of different overburden types. The basic principle is that the continuous bedrock layer will be fractured into discontinuous rock layers by fracturing technology, and by weakening the “tip effect” of upward expansion of mining induced water flowing fracture in hard rock stratum to restrain the development height of water flowing fracture. Then, the soft clay grouting materials are used to modify the strata into relatively weak ones. Therefore, the P-G method plays a dual role in restraining the upward development of the water flowing fracture zone and reducing the water conductivity of the overlying strata, so as to realize the water loss control of the coal seam roof aquifer. Taking the Yushen Mining Area in the energy base of northern Shaanxi as the analysis object, this paper discusses the control method of P-G water loss in roof aquifer before mining, including the analysis of geological and hydrogeological conditions, the identification of water inflow(loss) pattern of aquifer in coal working face, prediction of development height of water flowing fracture zone, water gushing mode of overburden rock, determination of P-G time, horizon and time, horizontal hole hydraulic fracturing of roof strata and grouting modification. It has certain reference significance for roof water disaster prevention and water resources coordinated protection technology practice in Yushen Mining Area of the energy base in northern Shaanxi.
Keywords
water resources protection, water disaster prevention and control, grouting transformation, pre-splitting, Yushen Mining Area
DOI
10.3969/j.issn.1001-1986.2021.02.020
Recommended Citation
ZHAO Chunhu, WANG Hao, JIN Dewu,
et al.
(2021)
"Discussion on roof water loss control method of coal seam based on pre-splitting grouting reformation(P-G),"
Coal Geology & Exploration: Vol. 49:
Iss.
2, Article 21.
DOI: 10.3969/j.issn.1001-1986.2021.02.020
Available at:
https://cge.researchcommons.org/journal/vol49/iss2/21
Reference
[1] 王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京:科学出版社,2010. WANG Shuangming,HUANG Qingheng,FAN Limin,et al. Coal development and ecological water level protection in ecologically fragile areas[M]. Beijing:Science Press,2010.
[2] 仵拨云,彭捷,向茂西,等. 榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J]. 采矿与安全工程学报,2018,35(5):984-990. WU Boyun,PENG Jie,XIANG Maoxi,et al. Research on Salawusu Formation aquifer protected by water preserving mining in Yushenfu mining area[J]. Journal of Mining & Safety Engineering,2018,35(5):984-990.
[3] 武强,赵苏启,孙文洁,等. 中国煤矿水文地质类型划分与特征分析[J]. 煤炭学报,2013,38(6):901-905. WU Qiang,ZHAO Suqi,SUN Wenjie,et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China[J]. Journal of China Coal Society,2013,38(6):901-905.
[4] 范立民,向茂西,彭捷,等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报,2016,41(11):2672-2678. FAN Limin,XIANG Maoxi,PENG Jie,et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society,2016,41(11):2672-2678.
[5] 范立民,马雄德,冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报,2015,40(8):1711-1717. FAN Limin,MA Xiongde,JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society,2015,40(8):1711-1717.
[6] 贺卫中,向茂西,刘海南,等. 榆神府矿区地面塌陷特征及环境问题[J]. 煤田地质与勘探,2016,44(5):131-135. HE Weizhong,XIANG Maoxi,LIU Hainan,et al. Ground subsidence and its environment problems in Yushenfu mining area[J]. Coal Geology & Exploration,2016,44(5):131-135.
[7] 范立民,马雄德,蒋泽泉,等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术,2019,47(7):1-30. FAN Limin,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1-30.
[8] 张杰,侯忠杰. 榆树湾浅埋煤层保水开采三带发展规律研究[J]. 湖南科技大学学报(自然科学版),2006,21(4):10-13. ZHANG Jie,HOU Zhongjie. Study on three strap in water resources preservation in Yushuwan shallow seam mining[J]. Journal of Hunan University of Science and Technology(Natural Science Edition),2006,21(4):10-13.
[9] MA Liqiang,JIN Zhiyuan,LIANG Jimeng,et al. Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences,2015,74(7):5653-5662.
[10] 彭小沾,崔希民,李春意,等. 陕北浅煤层房柱式保水开采设计与实践[J]. 采矿与安全工程学报,2008,25(3):301-304. PENG Xiaozhan,CUI Ximin,LI Chunyi,et al. Design and practice of room & pillar water-preserved mining for shallowly buried coal seam in North of Shaanxi Province[J]. Journal of Mining & Safety Engineering,2008,25(3):301-304.
[11] 黄庆享,张文忠. 浅埋煤层条带充填隔水岩组力学模型分析[J]. 煤炭学报,2015,40(5):973-978. HUANG Qingxiang,ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip-filling mining[J]. Journal of China Coal Society,2015,40(5):973-978.
[12] 马立强,张东升,王烁康,等. "采充并行"式保水采煤方法[J]. 煤炭学报,2018,43(1):62-69. MA Liqiang,ZHANG Dongsheng,WANG Shuokang,et al. Water-preserved mining with the method named "backfilling while mining"[J]. Journal of China Coal Society,2018,43(1):62-69.
[13] 李文平,王启庆,李小琴. 隔水层再造-西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88-97. LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in northwest China[J]. Journal of China Coal Society,2017,42(1):88-97.
[14] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015,40(2):239-246. GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239-246.
[15] 曹志国,鞠金峰,许家林. 采动覆岩导水裂隙主通道分布模型及其水流动特性[J]. 煤炭学报,2019,44(12):3719-3728. CAO Zhiguo,JU Jinfeng,XU Jialin. Distribution model of water-conducted fracture main channel and its flow characteristics[J]. Journal of China Coal Society,2019,44(12):3719-3728.
[16] 董书宁,王皓,张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报,2019,44(7):2216-2226. DONG Shuning,WANG Hao,ZHANG Wenzhong. Judgment criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society,2019,44(7):2216-2226.
[17] 董书宁,柳昭星,郑士田,等. 基于岩体宏细观特征的大型帷幕注浆保水开采技术及应用[J]. 煤炭学报,2020,45(3):1137-1149. DONG Shuning,LIU Zhaoxing,ZHENG Shitian,et al. Technology and application of large curtain grouting water conservation mining based on macroscopic and mesoscopic characteristics of rock mass[J]. Journal of China Coal Society,2020,45(3):1137-1149.
[18] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coal bed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150-159.
[19] 赵善坤,李英杰,柴海涛,等. 厚层砂岩顶板定向水力压裂预割缝倾角优化及防冲实践[J/OL]. 煤炭学报,https://doi.org/10.13225/j.cnki.jccs.2019.11.24 ZHAO Shankun,LI Yingjie,CHAI Haitao,et al. Pre-existing crack angle optimization of thick sandstone roof during directional hydraulic fracturing and its application to anti rockburst[J]. Journal of China Coal Society,https://doi.org/10.13225/j.cnki.jccs.2019.11.24
[20] 罗天雨,刘全稳,刘元爽. 干热岩压裂开发技术现状及展望[J]. 中外能源,2017,22(10):23-27. LUO Tianyu,LIU Quanwen,LIU Yuanshuang. Present situation and prospect on hydraulic fracturing development technique of hot dry rock[J]. Sino-Global Energy,2017,22(10):23-27.
[21] 许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报,2015,33(19):35-39. XU Tianfu,ZHANG Yanjun,YU Ziwang,et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science & Technology Review,2015,33(19):35-39.
[22] 缪协兴,王安,孙亚军,等. 干旱半干旱矿区水资源保护性采煤基础与应用研究[J]. 岩石力学与工程学报,2009,28(2):217-227. MIAO Xiexing,WANG An,SUN Yajun,et al. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):217-227.
[23] 李银山. Maple材料力学[M]. 北京:机械工业出版社,2009. LI Yinshan. Maple mechanics of materials[M]. Beijing:China Machine Press,2009.
[24] 李世愚,和泰名,尹祥础. 岩石断裂力学[M]. 北京:科学出版社,2015. LI Shiyu,HE Taiming,YIN Xiangchu. Rock fracture mechanics[M]. Beijing:Science Press,2015.
[25] 刘瑜. 陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D]. 徐州:中国矿业大学,2018. LIU Yu. Dynamic evolution and application of water conducting fractured zone during extraction of Jurassic coal seams in Northern Shaanxi[D]. Xuzhou:China University of Mining and Technology,2018.
[26] 刘士亮. 陕北侏罗系煤田开采环境工程地质模式研究[D]. 徐州:中国矿业大学,2019. LIU Shiliang. Environmental engineering geological patterns relating to mining activities in Jurassic Coalfield of northern Shaanxi[D]. Xuzhou:China University of Mining and Technology,2019.
[27] 窦林名,阚吉亮,李许伟,等. 断顶爆破防治冲击矿压技术体系及效果评价研究[J]. 煤炭科学技术,2020,48(1):24-32. DOU Linming,KAN Jiliang,LI Xuwei,et al. Study on prevention technology of rock burst by break-tip blasting and its effect estimation[J]. Coal Science and Technology,2020,48(1):24-32.
[28] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013. WU Qiang,ZHAO Suqi,DONG Shuning,et al. Handbook of mine water control[M]. Beijing:China Coal Industry Publishing House,2013.
[29] 王晓振,许家林,韩红凯,等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报,2019,44(12):3740-3749. WANG Xiaozhen,XU Jialin,HAN Hongkai,et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society,2019,44(12):3740-3749.
[30] 蒋泽泉,王建文,王宏科. 浅埋煤层关键隔水层隔水性能及采动影响变化[J]. 中国煤炭地质,2011,23(4):26-31. JIANG Zequan,WANG Jianwen,WANG Hongke. Impermeability and mining impacts of key aquifuges for shallowly buried coal seams[J]. Coal Geology of China,2011,23(4):26-31.
[31] 刘治国,樊振丽,张玉军,等. 黏土隔水层抗采动能力试验研究[J]. 煤炭技术,2017,36(12):63-65. LIU Zhiguo,FAN Zhenli,ZHANG Yujun,et al. Experimental study of resistance to mining influence ability of clay aquiclude[J]. Coal Technology,2017,36(12):63-65.
[32] 傅宏科. 榆神矿区地下水资源勘查与开发[J]. 陕西煤炭,2007(3):5-7. FU Hongke. Groundwater resources exploration and development in Yushen mining area[J]. Shaanxi Coal,2007(3):5-7.
[33] 宁建宏,王丽. 榆神矿区三期涉及水源地的总体保护措施[J]. 能源环境保护,2013,27(1):32-34. NING Jianhong,WANG Li. The overall protective measures of water sources in the three stage in Yushen mining area[J]. Energy and Environmental Protection,2013,27(1):32-34.
[34] 李智学,申小龙,李明培,等. 榆神矿区最上可采煤层赋存规律及开采危害程度[J]. 煤田地质与勘探,2019,47(3):130-139. LI Zhixue,SHEN Xiaolong,LI Mingpei,et al. Occurrence regularity of uppermost minable coal seams and their harmful level of mining in Yushen mining area[J]. Coal Geology & Exploration,2019,47(3):130-139.
[35] 师本强. 陕北浅埋煤层砂土基型矿区保水开采方法研究[J]. 采矿与安全工程学报,2011,28(4):548-552. SHI Benqiang. Research on water-preserved-mining in shallow seam covered with rock soil and sand in northern Shaanxi[J]. Journal of Mining and Safety Engineering,2011,28(4):548-552.
[36] 王悦,夏玉成,杜荣军. 陕北某井田保水采煤最大采高探讨[J]. 采矿与安全工程学报,2014,31(4):558-563. WANG Yue,XIA Yucheng,DU Rongjun. Discussion on the maximum mining height of coal mining under water-containing condition in one mine field of northern Shaanxi Province[J]. Journal of Mining and Safety Engineering,2014,31(4):558-563.
[37] 李涛,王苏健,韩磊,等. 生态脆弱矿区松散含水层下采煤保护土层合理厚度[J]. 煤炭学报,2017,42(1):98-105. LI Tao,WANG Sujian,HAN Lei,et al. Reasonable thickness of protected loess under loose aquifer in ecologically fragile mining area[J]. Journal of China Coal Society,2017,42(1):98-105.
[38] 常金源,李文平,李涛,等. 神南矿区煤炭开采水资源漏失量评价分区[J]. 煤田地质与勘探,2011,39(5):41-45. CHANG Jinyuan,LI Wenping,LI Tao,et al. Zonation of water resources leakage due to coal mining in Shennan mining area[J]. Coal Geology & Exploration,2011,39(5):41-45.
[39] 郑磊,白海波,马凯. 凉水井煤矿顶板导水裂隙发育机理分析[J]. 煤炭技术,2017,36(1):182-184. ZHENG Lei,BAI Haibo,MA Kai. Development mechanism analysis of water-flowing fractured zone in roof of Liangshuijing Coal Mine[J]. Coal Technology,2017,36(1):182-184.
[40] 李智学,李明培,申小龙,等. 榆神矿区基岩顶面土层缺失机理分析及其防治水意义[J]. 煤田地质与勘探,2018,46(6):102-107. LI Zhixue,LI Mingpei,SHEN Xiaolong,et al. Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area[J]. Coal Geology & Exploration,2018,46(6):102-107.
[41] 赵春虎. 深埋煤层采动覆岩渗透能力变异与地下水响应模拟[J]. 南水北调与水利科技,2018,16(2):171-176. ZHAO Chunhu. Study on permeability variation and groundwater response under disturbance of deep coal seam mining[J]. South to North Water Transfers and Water Science & Technology,2018,16(2):171-176.
[42] 张连震,李志鹏,张庆松,等. 砂层压密特性及其对劈裂-压密注浆扩散过程的影响[J]. 煤炭学报,2020,45(2):667-675. ZHANG Lianzhen,LI Zhipeng,ZHANG Qingsong,et al. Compaction behavior of sand layer and its effect on diffusion process of fracture-compaction grouting mode[J]. Journal of China Coal Society,2020,45(2):667-675.
[43] 黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017,42(1):50-55. HUANG Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of China Coal Society,2017,42(1):50-55.
[44] 宁廷州,戴华宾,雒军莉,等. 厚硬煤层综放开采水压致裂技术及应用研究[J]. 中国煤炭,2019,45(4):52-55. NING Tingzhou,DAI Huabin,LUO Junli,et al. Study on hydraulic fracturing technology and application of fully mechanized caving in thick and hard coal seam[J]. China Coal,2019,45(4):52-55.
[45] 李金龙,张允强,徐新启,等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探,2019,47(增刊1):20-25. LI Jinlong,ZHANG Yunqiang,XU Xinqi,et al. Reinforcement and water plugging technology of roof grouting in Gaojiabao Coal Mine[J]. Coal Geology & Exploration,2019,47(Sup.1):20-25.
Click below to download English version.
Discussion on roof water loss control method of coal seam based on pre-splitting grouting reformation (P–G).PDF (1325 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons