Coal Geology & Exploration
Abstract
Shale reservoir characteristics are the basic content of shale gas storage capacity evaluation. In order to explore the properties of high-evolved coal-measures shale gas reservoirs and optimize favorable reservoirs, various experimental methods of rock pyrolysis, X-ray diffraction, scanning electron microscopy, high-pressure mercury intrusion, low-temperature N2 and CO2 gas adsorption were applied to the Qinshui Basin. Reservoir characteristics were studied with core samples of coal-measure shale core from the Upper Paleozoic in Yangquan Block. The results show that the Upper Paleozoic coal-measures shale in Yangquan Block of the Qinshui Basin has a high content of organic carbon(average TOC is 4.9%), is in an over-mature stage(average Rran is 2.32%), and has a high content of clay minerals(average is 50.0%), with the characteristics of low porosity and low permeability(average porosity of 6.61%, average permeability of 0.006 3×10–3 μm2). The pore types are mainly intergranular pores, intragranular pores and microcracks, and micro-nano-scale pores provide the storage space for the occurrence of shale gas; the total pore volume of pores is 0.025 5-0.051 7 mL/g, the average is 0.038 9 mL/g, the total specific surface area is 12.64-40.98 m2/g, the average is 28.43 m2/g, the pore volume of the micropores(< 2 nm), and the mesopores(2-50 nm) has a good positive correlation with the specific surface area, while the pore volume of macropores(>50 nm) has no obvious correlation with the specific surface area, indicating that the micropores and the mesopores are Yangquan blocks. The main carrier of coal-measure shale gas accumulation. In general, the Upper Paleozoic coal-measure shale in the Yangquan Block has good shale gas storage performance, but the shale reservoir has poor fracturing properties, which will affect the development of shale gas.
Keywords
shale gas reservoir, coal-measure shale, reservoir physical properties, pore structure, Yangquan Block, Qinshui Basin
DOI
10.3969/j.issn.1001-1986.2021.02.018
Recommended Citation
LI Yangyang, LI Xianqing, ZHANG Xueqing,
et al.
(2021)
"Characteristics of shale gas reservoir in Upper Paleozoic coal measures in Yangquan Block, Qinshui Basin,"
Coal Geology & Exploration: Vol. 49:
Iss.
2, Article 19.
DOI: 10.3969/j.issn.1001-1986.2021.02.018
Available at:
https://cge.researchcommons.org/journal/vol49/iss2/19
Reference
[1] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136. JIA Chengzao,ZHENG Min,ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129-136.
[2] 张金华,魏伟,钟太贤. 国外页岩气资源储量评价方法分析[J]. 中外能源,2011,16(9):38-42. ZHANG Jinhua,WEI Wei,ZHONG Taixian. Evaluation methods analysis about resources and reserves of foreign shale gas[J]. Sino-Global Energy,2011,16(9):38-42.
[3] 张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报,2019,44(增刊1):195-204. ZHANG Jizhen,LI Xianqing,ZHANG Xueqing,et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society,2019,44(Sup.1):195-204.
[4] 张金川,徐波,聂海宽,等. 中国天然气勘探的两个重要领域[J]. 天然气工业,2007,27(11):1-6. ZHANG Jinchuan,XU Bo,NIE Haikuan,et al. Two essential gas accumulations for natural gas exploration in China[J]. Natural Gas Industry,2007,27(11):1-6.
[5] HILL R J,ZHANG Etuan,KATZ B J,et al. Modeling of gas generation from the Barnett shale,Fort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4):501-521.
[6] 王社教,李登华,李建忠,等. 鄂尔多斯盆地页岩气勘探潜力分析[J]. 天然气工业,2011,31(12):40-46. WANG Shejiao,LI Denghua,LI Jianzhong,et al. Exploration potential of shale gas in the Ordos Basin[J]. Natural Gas Industry,2011,31(12):40-46.
[7] 秦勇,梁建设,申建,等. 沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J]. 煤炭学报,2014,39(8):1559-1565. QIN Yong,LIANG Jianshe,SHEN Jian,et al. Gas logging shows and gas reservoir types in tight sandstones and shales from southern Qinshui Basin[J]. Journal of China Coal Society,2014,39(8):1559-1565.
[8] 陈晶,黄文辉,陈燕萍,等. 沁水盆地煤系地层页岩储层评价及其影响因素[J]. 煤炭学报,2017,42(增刊1):215-224. CHEN Jing,HUANG Wenhui,CHEN Yanping,et al. Evaluation of shale reservoir and its influencing factors in coal-bearing strata of Qinshui Basin[J]. Journal of China Coal Society,2017,42(Sup.1):215-224.
[9] 付娟娟,郭少斌,高全芳,等. 沁水盆地煤系地层页岩气储层特征及评价[J]. 地学前缘,2016,23(2):167-175. FU Juanjuan,GUO Shaobin,GAO Quanfang,et al. Reservoir characteristics and enrichment conditions of shale gas in the Carboniferous-Permian coal-bearing formations of Qinshui Basin[J]. Earth Science Frontiers,2016,23(2):167-175.
[10] 韩作振,李赟,高丽华,等. 鲁西地区石炭-二叠系太原组页岩气潜力[J]. 山东科技大学学报(自然科学版),2015,34(2):51-57. HAN Zuozhen,LI Yun,GAO Lihua,et al. Shale gas resource potential of Permo-Carboniferous system Taiyuan Formation in west Shandong Province[J]. Journal of Shandong University of Science and Technology(Natural Science Edition),2015,34(2):51-57.
[11] 李平,李盛富,刘宇,等. 沁水盆地煤系页岩气成藏模式分析[J]. 地质与勘探,2018,54(2):395-403. LI Ping,LI Shengfu,LIU Yu,et al. Reservoir models of the coal measure shale gas in the Qinshui Basin[J]. Geology and Exploration,2018,54(2):395-403.
[12] 闫宝珍,王延斌,丰庆泰,等. 基于地质主控因素的沁水盆地煤层气富集划分[J]. 煤炭学报,2008,33(10):1102-1106. YAN Baozhen,WANG Yanbin,FENG Qingtai,et al. Coalbed methane enrichment classifications of Qinshui Basin based on geological key controlling factors[J]. Journal of China Coal Society,2008,33(10):1102-1106.
[13] 陈世悦,刘焕杰. 华北晚古生代层序地层模式及其演化[J]. 煤田地质与勘探,1995,23(5):1-5. CHEN Shiyue,LIU Huanjie. Sequence stratigraphic models and thire evolution of late palaeozoic in North China[J]. Coal Geology & Exploration,1995,23(5):1-5.
[14] 赵孟军,宋岩,苏现波,等. 沁水盆地煤层气藏演化的关键时期分析[J]. 科学通报,2005,50(增刊1):110-116. ZHAO Mengjun,SONG Yan,SU Xianbo,et al. Analysis of the critical period of coalbed methane reservoir evolution in Qinshui Basin[J]. Science Bulletin,2005,50(Sup.1):110-116.
[15] 齐治虎,刘坤鹏,吕国安. 山西沁水盆地3号煤层水平井施工技术探究[J]. 能源与环保,2020,42(5):68-71. QI Zhihu,LIU Kunpeng,LYU Guo'an. Research on construction technology of horizontal well in No.3 coal seam of Qinshui Basin in Shanxi Province[J]. China Energy and Environmental Protection,2020,42(5):68-71.
[16] 张培河,刘云亮,贾立龙. 鄂尔多斯盆地东部上古生界煤系页岩气藏特征及勘探方向[J]. 煤田地质与勘探,2016,44(4):54-58. ZHANG Peihe,LIU Yunliang,JIA Lilong. Shale gas reservior characteristics of the Upper Paleozoic coal measures and exploration direction in eastern Ordos Basin[J]. Coal Geology & Exploration,2016,44(4):54-58.
[17] LOUCKS R G,REED R M,RUPPEL S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin,2012,96(6):1071-1098.
[18] REED R M,LOUCKS R L. Imaging nanoscale pores in the Mississippian Barnett Shale of the northern Fort Worth Basin[J]. AAPG Annual Convention Abstracts,2007,16:115.
[19] BUSTIN R M,BUSTIN A,CUI X,et al. Impact of shale properties on pore structure and storage characteristics[C]//SPE 119892 presented at SPE Shale Gas Production Conference. Fort Worth,Texas,USA:2008.
[20] MONTGOMERY S L,JARVIE D M,BOWKER K A,et al. Mississippian Barnett Shale,Fort Worth Basin,north-central Texas:Gas-shale play with multi-trillion cubic foot potential:Reply[J]. AAPG Bulletin,2006,90(6):967-969.
[21] JARVIE D M,HILL R J,RUBLE T E. et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
[22] BOWKER K A. Barnett shale gas production,Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin,2007,91(4):523-533.
[23] 张敏,李贤庆,张吉振,等. 新疆阜康地区八道湾组煤系页岩气储层孔隙结构特征[J]. 地球化学,2020,49(1):95-107. ZHANG Min,LI Xianqing,ZHANG Jizhen,et al. Pore structure characteristics of a shale gas reservoir from coal measures in the Badaowan Formation,Fukang area of the Xinjiang Uygur Autonomous Region[J]. Geochimica,2020,49(1):95-107.
[24] 陈磊,姜振学,邢金艳,等. 川西坳陷新页HF-1井须五段泥页岩吸附气含量主控因素及其定量预测模型[J]. 现代地质,2014,28(4):824-831. CHEN Lei,JIANG Zhenxue,XING Jinyan,et al. Main controlling factors and prediction model of adsorbed gas content in the fifth member of Xujiahe Formation from well Xinye HF-1,western Sichuan depression[J]. Geoscience,2014,28(4):824-831.
[25] ZHANG Jizhen,LI Xianqing,WEI Qiang,et al. Quantitative characterization of pore-fracture system of organic-rich marine-continental shale reservoirs:A case study of the Upper Permian Longtan Formation,southern Sichuan Basin,China[J]. Fuel,2017,200:272-281.
[26] ZHANG Jizhen,LI Xianqing,WEI Qiang,et al. Characterization of full-sized pore structure and fractal characteristics of marine-continental transitional Longtan Formation shale of Sichuan Basin,South China[J]. Energy & Fuels,2017,31(10):10490-10504.
[27] 徐宏杰,胡宝林,刘会虎,等. 淮南煤田下二叠统山西组煤系页岩气储层特征及物性成因[J]. 天然气地球科学,2015,26(6):1200-1210. XU Hongjie,HU Baolin,LIU Huihu,et al. Reservoir characteristics and its physical origin of shale gas in coal measure in the Lower Permian Shanxi Formation in Huainan Coal Field[J]. Natural Gas Geoscience,2015,26(6):1200-1210.
[28] 李俊,张定宇,李大华,等. 沁水盆地煤系非常规天然气共生聚集机制[J]. 煤炭学报,2018,43(6):1533-1546. LI Jun,ZHANG Dingyu,LI Dahua,et al. Co-accumulating mechanisms of unconventional gas in the coal measure of the Qinshui Basin[J]. Journal of China Coal Society,2018,43(6):1533-1546.
[29] 张吉振,李贤庆,郭曼,等. 川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素[J]. 天然气地球科学,2015,26(8):1571-1578. ZHANG Jizhen,LI Xianqing,GUO Man,et al. Microscopic pore characteristics and its influence factors of the Permian Longtan Formation shales in the southern Sichuan Basin[J]. Natural Gas Geoscience,2015,26(8):1571-1578.
[30] 赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956. ZHAO Pei,LI Xianqing,TIAN Xingwang,et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience,2014,25(6):947-956.
[31] 郗兆栋,唐书恒,李俊,等. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学,2017,28(3):366-376. XI Zhaodong,TANG Shuheng,LI Jun,et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J]. Natural Gas Geoscience,2017,28(3):366-376.
[32] 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报,2013,34(2):301-311. YANG Feng,NING Zhengfu,HU Changpeng,et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica,2013,34(2):301-311.
[33] ROWE H D,LOUCKS R G,RUPPEL S C,et al. Mississippian Barnett Formation,Fort Worth Basin,Texas:Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology,2008,257(1/2):16-25.
[34] HU Jingang,TANG Shuheng,ZHANG Songhang. Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J]. Journal of Natural Gas Science & Engineering,2016,28:522-535.
[35] 周闻达,王莹,鲍征宇,等. 等温吸附法在页岩孔隙结构测试中的应用[J]. 科技通报,2015,31(1):12-18. ZHOU Wenda,WANG Ying,BAO Zhengyu,et al. The application of isotherm adsorption in measuring the shale pore structure[J]. Bulletin of Science and Technology,2015,31(1):12-18.
[36] IUPAC. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1982,54(11):2201-2218.
[37] BROEKHOFF J C P. Studies on pore systems in catalysts XIII:Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores:B applications[J]. Journal of Catalysis,1968,10(4):377-390.
[38] IUPAC. Physical chemistry division commission on colloid and surface chemistry,subcommittee on characterization of porous solids:Recommendations for the characterization of porous solids(technical report)[J]. Pure and Applied Chemistry,1994,66(8):1739-1758.
[39] 李贤庆,王哲,郭曼,等. 黔北地区下古生界页岩气储层孔隙结构特征[J]. 中国矿业大学学报,2016,45(6):1172-1183. LI Xianqing,WANG Zhe,GUO Man,et al. Pore structure characteristics of the Lower Paleozoic Formation shale gas reservoir in northern Guizhou[J]. Journal of China University of Mining and Technology,2016,45(6):1172-1183.
[40] 李贤庆,王元,郭曼,等. 川南地区下古生界页岩气储层孔隙特征研究[J]. 天然气地球科学,2015,26(8):1464-1471. LI Xianqing,WANG Yuan,GUO Man,et al. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J]. Natural Gas Geoscience,2015,26(8):1464-1471.
[40] 李建军,白培康,毛虎平,等. 郑庄-胡底煤层气地球化学特征及成因探讨[J]. 煤炭学报,2014,39(9):1802-1811. LI Jianjun,BAI Peikang,MAO Huping,et al. Analysis of geochemistry characteristics and its origin of CBM in Zhengzhuang and Hudi blocks[J]. Journal of China Coal Society,2014,39(9):1802-1811.
[41] 王晓锋,刘文汇,徐永昌,等. 水介质对气态烃形成演化过程氢同位素组成的影响[J]. 中国科学:D辑地球科学,2012,42(1):103-110. WANG Xiaofeng,LIU Wenhui,XU Yongchang,et al. Influences of water media on the hydrogen isotopic composition of natural gas/methane in the processes of gaseous hydrocarbon generation and evolution[J]. Science in China:Series D Earth Science,2012,42(1):103-110.
[42] 王晓锋,刘文汇,徐永昌,等. 不同成因天然气的氢同位素组成特征研究进展[J]. 天然气地球科学,2006,17(2):163-169.WANG Xiaofeng,LIU Wenhui,XU Yongchang,et al. The hydrogen isotopic composition of natural gases generated from different pathway[J]. Natural Gas Geoscience,2006,17(2):163-169.
[43] WHITICAR M J,FABER E,SCHOELL M. Biogenic methane formation in marine and freshwater environments:CO2 reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta,1986,50:693-709.
[44] JENDEN P D,KAPLAN I R. Comparison of microbial gases from the middle America Trench and Scripps submarine canyon:Implications for the origin of natural gas[J]. Applied Geochemistry,1986,1(6):631-646.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons