•  
  •  
 

Coal Geology & Exploration

Abstract

The complexity of geological conditions is one of the key issues affecting the further development of current intelligent mining, and there is an urgent need to build a high-precision 3D geological model of the mining face. This article analyzes the construction method of the intelligent mining geological model, and takes an intelligent working face of Huangling No.1 Mine as an example, combines all the geological exploration data of the working face, and uses the TIM-3D modeling software to construct the initial static model and the working face respectively. The dynamic model of the working face is equipped with a transparent face digital twin system to display the intelligent mining geological model; by comparing the actual coal thickness value revealed by the mining and the geological model predicting the coal thickness value, the error between the static geological model and the dynamic geological model was analyzed. The reasons for the model errors were explained. The analysis concluded that: The accuracy of the static geological model cannot meet the geological requirements of intelligent mining; the updated dynamic geological model can significantly reduce the coal thickness prediction error and basically meet the geological requirements of intelligent mining; the error of the model is the measurement error and the amount of sampled data It is caused by the selection of its distribution and interpolation algorithm. It is comprehensively believe that the establishment of the model should fully integrate all the geological information of the working face, the interval between the roadway marker points in the model establishment should be less than 10 m, and the advancing and mining distance for the dynamic update of the model should be less than 15 m. The research results are of great significance for fully understanding the accuracy of the current intelligent mining geological model, and for the next step of the development of intelligent intelligent mining geological support technology.

Keywords

intelligent mining, geological model, error analysis, geological transparency

DOI

10.3969/j.issn.1001-1986.2021.02.012

Reference

[1] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10. WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.

[2] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.

[3] 张操. 我国能源消费结构调整背景下煤炭企业的应对策略[J]. 煤炭与化工,2017(5):133-136. ZHANG Cao. Countermeasures of coal enterprises under background of my energy consumption structure adjustment in China[J]. Coal and Chemical Industry,2017(5):133-136.

[4] 武强,张立宽. 我国煤炭工业实现三大科技革命[N]. 中国煤炭报,2018-12-15. WU Qiang,ZHANG Likuan. Coal industry has achieved three major technological revolutions in China[N]. China Coal News,2018-12-15.

[5] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12. WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospects on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.

[6] 范京道. 大采高工作面智能化综采关键技术研究[J]. 工矿自动化,2018,44(12):1-8. FAN Jingdao. Research on the key technologies of intelligent fully mechanized mining on working face with large mining height[J]. Industry and Mine Automation,2018,44(12):1-8.

[7] 刘峰. 清楚认识我国煤矿智能化发展进程[N]. 中国煤炭报,2020-11-26. LIU Feng. A clear understanding of the development process of intelligent coal mines in my country[N]. China Coal News,2020-11-26.

[8] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1-7. YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1-7.

[9] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.

[10] 王存飞,荣耀. 透明工作面的概念、架构与关键技术[J]. 煤炭科学技术,2019,47(7):156-163. WANG Cunfei,RONG Yao. The concept,architecture and key technologies of transparent working face[J]. Coal Science and Technology,2019,47(7):156-163.

[11] 董书宁. 打造智能化开采地质保障的升级版[N]. 中国煤炭报,2020-03-21. DONG Shuning. Create an upgraded version of intelligent mining geological protection[N]. China Coal News,2020-03-21.

[12] 毛善君,崔建军,令狐建设,等.透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539-3548. MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539-3548.

[13] FAN Qigao,LI Wei,LUO Chengming. Error analysis and reduction for shearer positioning using the strap down inertial navi-gation system[J]. International Journal of Computer Science,2012(2):49-54.

[14] REID D C,HAINSWORTH D W,RALSTON J C,et al. Inertial navigation:Enabling technology for longwall mining automation[R]. Calgary:Computer Application In Minerals Industries,2003.

[15] 王铁军. 基于动态精细建模的薄煤层采煤机广义记忆切割技术研究[D]. 北京:中国矿业大学(北京),2013. WANG Tiejun. Research on The generalized memory cutting technology of thin seam shearers based on dynamic fine modeling[D]. Beijing:China University of Mining and Technology(Beijing),2013.

[16] 王志刚. 基于精确煤层三维地质模型的采煤机煤岩界面识别系统[J]. 中国煤炭,2014,40(11):50-54. WANG Zhigang. Coal-rock interface recognition system for shearers based on accurate coal seam 3D model[J]. China Coal,2014,40(11):50-54.

[17] 马宏伟,张旭辉,齐爱玲,等. 基于地质数据的智能化工作面煤岩界面识别方法:CN106194181A[P]. 2016-12-07. MA Hongwei,ZHANG Xuhui,QI Ailing,et al. Intelligent coal-rock interface recognition method based on geological data:CN106194181A[P]. 2016-12-07.

[18] 马宏伟,吴海雁,齐爱玲,等. 一种基于地质数据的工作面煤层三维建模方法:CN106296817A[P]. 2017-01-04. MA Hongwei,WU Haiyan,QI Ailing,et al. A 3D modeling method of coal seam based on geological data:CN106296817A[P]. 2017-01-04.

[19] 马宏伟,齐爱玲,毛清华,等. 一种面向采煤机记忆截割的灰色马尔可夫链轨迹预测方法:CN106295873A[P]. 2017-01-04. MA Hongwei,QI Ailing,MAO Qinghua,et al. A gray markov chain trajectory prediction method for shearer memory cutting:CN106295873A[P]. 2017-01-04.

[20] 王旭鸣,李首滨,黄曾华,等. 一种基于透明工作面的采煤方法和系统:CN107905786A[P]. 2018-04-13. WANG Xuming,LI Shoubin,HUANG Zenghua,et al. A coal mining method and system based on transparent working face:CN107905786A[P]. 2018-04-13.

[21] 高有进,罗开成,张继业. 综采工作面智能化开采现状及发展展望[J]. 能源与环保,2018,40(11):167-171. GAO Youjin,LUO Kaicheng,ZHANG Jiye. Present situation and development prospect of intelligent mining on fully-mechanized working face[J]. China Energy and Environmental Protection,2018,40(11):167-171.

[22] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

[23] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118-126. CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining facet[J]. Coal Science and Technology,2020,48(7):118-126.

[24] 苏幸,黄临平,林孝成,等. 基于四面体格网的三维地质体建模算法[J]. 煤田地质与勘探,2008,36(1):5-9. SU Xing,HUANG Linping,LIN Xiaocheng,et al. 3D geology body modeling algorithm based on tetrahedron grid[J]. Coal Geology& Exploration,2008,36(1):5-9.

[25] 董前林,李青元,曹代勇,等. 多源地质数据综合三维建模及地质学分析:以青海木里三露天勘探区为例[J]. 煤田地质与勘探,2017,45(3):37-44. DONG Qianlin,LI Qingyuan,CAO Daiyong,et al. 3D modeling with integration f geological data of multi-sources and geological analysis:A case of Sanlutian explorating area of Muli,Qinghai[J]. Coal Geology & Exploration,2017,45(3):37-44.

[26] 王润怀,李永树. 异源点集下三维断层建模方法[J]. 煤田地质与勘探,2007,35(5):11-16. WANG Runhuai,LI Yongshu. 3D fault modeling on point sets from different sources[J]. Coal Geology & Exploration,2007,35(5):11-16.

[27] 王宝龙,李青元,贾会玲,等. 正则化薄板样条函数拟合地层界面[J]. 煤田地质与勘探,2017,45(5):23-27. WANG Baolong,LI Qingyuan,JIA Huiling,et al. Fitting stratum interface through regularized thin-plate spline function[J]. Coal Geology & Exploration,2017,45(5):23-27.

[28] 魏竹斌,李青元,张明辉,等. 基于煤层底板等高线的逆断层叠覆区全自动三角剖分[J].煤田地质与勘探,2018,46(1):28-34. WEI Zhubin,LI Qingyuan,ZHANG Minghui,et al. Method of full-automatic triangulation for reverse faults with overlapping area based on coal seam floor contour map[J]. Coal Geology & Exploration,2018,46(1):28-34.

[29] 陈春梅,李青元,董前林. 地质曲面"三维联动编辑"的一种实现方法[J]. 煤田地质与勘探,2017,45(2):27-31. CHEN Chunmei,LI Qingyuan,DONG Qianlin. One implementation method of geological surfaces' 3D interaction editing[J]. Coal Geology & Exploration,2017,45(2):27-31.

[30] 姜在炳. 煤层动态建模技术及应用[J]. 煤炭学报,2006,31(1):40-44. JIANG Zaibing. Dynamic modelling technology of coal seam and its application[J]. Journal of China Coal Society,2006,31(1):40-44.

[31] HOULDING S W. Geological interpretation and modeling[C]//3D geoscience modeling. Springer,Berlin,Heidelberg,1994:113-129.

[32] 祁和刚,毛善君,王昌傲,等. 煤矿高精度三维动态地质模型的研究与应用[M]. 北京:科学出版社,2016. QI Hegang,MAO Shanjun,WANG Changao,et al. Research and application of high-precision three-dimensional dynamic geological model of coal mines[M]. Beijing:Science Press,2016.

[33] 姜在炳. 煤层3D动态建模技术及应用研究[D]. 北京:煤炭科学研究总院,2008. JIANG Zaibing. 3D dynamic modeling technology and application research of coal seam[D]. Beijing:China Coal Research Institute,2008.

[34] 程建远,朱梦博,崔伟雄,等. 回采工作面递进式煤厚动态预测试验研究[J]. 煤炭科学技术,2019,47(1):237-244. CHENG Jianyuan,ZHU Mengbo,CUI Weixiong,et al. Experimental study of coal thickness progressive prediction in working face[J]. Coal Science and Technology,2019,47(1):237-244.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.