Coal Geology & Exploration
Abstract
Coal and uranium resources are closely related in spatial disposition as well as mineralization, and the reasonable development, utilization and pollution control of them play an essential role in the sustainable development of our national economy and society. Based on a large number of literature research and the previous results of our research group, some conclusions were drawn with regard to the distribution and occurrence of uranium in coal `and its migration in the process of coal preparation, combustion and leaching:(1) The enrichment and mineralization of uranium in coal has reflected the evolution of coal-forming tectonics:The U-rich coal in Southwest China is mainly related to Emei Mountain basalt and fault structure; the U-rich coal in Northwest China is generally located in depression and open area of fault-depression basin, and is connected with overlying sandstone-type uranium deposit. (2) Uranium is mainly combined with organic matter(mainly humic acid) in coal. It can occur in the form of micro-fine uranium bearing minerals, and is closely associated with organic sulfur and sulfide in U-rich coal. Therefore, in the process of coal preparation, whether gravity separation or flotation, the removal rate of uranium is not high(the highest is 68.3%), and uranium of some coal even enriched in clean coal during flotation; uranium will volatilize to the atmosphere more or less in the form of gas phase during coal combustion. (3) Generally, U-rich coal is also enriched with V, Mo, Se, Re, Cr and other variable valence elements in high valence, which is related to the strong reduction environment caused by the burial depth and decomposition of organisms; the precipitation enrichment of those constant-valence elements, such as Sc, Y, La, is mainly connected with the acidification conditions of humic acid formation. These paragenetic assemblage elements show consistent migration behavior during U-rich coal separation and the leaching process of coal gangue. (4) Uranium is mainly enriched(increase in the form of magnitude) in fly ash and bottom ash during coal combustion in power plant. Generally, with the increase of pH value of leaching solution, the leaching concentration of uranium in fly ash decreases; the extraction rate of it decreases with the increase of ashing temperature. The results provide reference and basis for uranium resource utilization and environmental pollution control.
Keywords
U-rich coal, distribution, occurrence, coal preparation, combustion, leaching, migration
DOI
10.3969/j.issn.1001-1986.2021.01.007
Recommended Citation
WANG Wenfeng, WANG Wenlong, LIU Shuangshuang,
et al.
(2021)
"Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization,"
Coal Geology & Exploration: Vol. 49:
Iss.
1, Article 8.
DOI: 10.3969/j.issn.1001-1986.2021.01.007
Available at:
https://cge.researchcommons.org/journal/vol49/iss1/8
Reference
[1] PAPASTEFANOU C,CHARALAMBOUS S. On the escaping radioactivity from coal power plants(CPP)[J]. Health Physics,1984,46(2):293-302.
[2] GLOWIAK B,PACYNA J. Radionuclide movement in an ecological chain[J]. Ecotoxicology and Environmental Safety,1978,1(4):447-455.
[3] BAUMAN A,HORVAT D. The impact of natural radioactivity from a coal-fired power plant[J]. Science of the Total Environment,1981,17(1):75-81.
[4] 卜贻孙,陈明智,黄祖琦,等. 煤中铀与煤矿环境[J]. 煤矿环境保护,1996,10(4):34-36. BU Yisun,CHEN Mingzhi,HUANG Zuqi,et al. Uranium in coal and coal mine environment[J]. Coal Mine Environmental Protection,1996,10(4):34-36.
[5] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004:249-291. TANG Xiuyi,HUANG Wenhui. Trace elements in coal in China[M]. Beijing:The Commercial Press,2004:249-291.
[6] 白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007(1):1-4. BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007(1):1-4.
[7] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94(3):3-21.
[8] KETRIS M P,YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78:135-148.
[9] 王玉静. 煤燃烧过程中铀的释放规律及赋存特性[D]. 武汉:华中科技大学,2017. WANG Yujing. The study on migration and occurrence modes of uranium during coal combustion[D]. Wuhan:Huazhong University of Science and Technology,2017.
[10] 代世峰,任徳贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707-1715. DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal-hosted rare metal deposits:Genetic types,modes of occurrence,and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707-1715.
[11] LAUER N,VENGOSH A,DAI Shifeng. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China[J]. Environmental Science and Technology,2017,51(22):13487-13493.
[12] 孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744-748. SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744-748.
[13] 姚振凯. 中国成煤大地构造演化与煤中铀的成矿作用[J]. 大地构造与成矿学,1988,12(3):185-196. YAO Zhenkai. Tectonic evolution of coal forming processes in China and uranium mineralization in coalbeds[J]. Geotectonica et Metallogenia,1988,12(3):185-196.
[14] 宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501-2513. NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501-2513.
[15] 张光弟,孙鲁仁,张绮玲. 癌症与地方病的地质构造:地球化学环境效应初步研究[J]. 中国地质,1994,8:23-27. ZHANG Guangdi,SUN Luren,ZHANG Qiling. On the effect of geological structural:Geochemical environmental research in the regional cancer and endemic diseases investigations[J]. Geology in China,1994,8:23-27.
[16] CHEN Jian,CHEN Ping,YAO Duoxi,et al. Abundance,distribution,and modes of occurrence of uranium in Chinese coals[J]. Minerals,2017,7(239):1-13.
[17] DAI Shifeng,YAN Xiaoyun,WARD C R,et al. Valuable elements in Chinese coals:A review[J]. International Geology Review,2018,60(5/6):590-620.
[18] XU Yigang,HE Bin,HUANG Xiaolong,et al. Late Permian Emeishan flood basalts in southwestern China[J]. Earth Science Frontiers,2007,14(2):1-9.
[19] 李沛,王庆伟,崔艳蕊. 西北地区煤中铀时空分布特征及富集机理[J]. 地球科技,2016,11:31-33. LI Pei,WANG Qingwei,CUI Yanrui. The temporal and spatial distribution features and enrichment mechanism of uranium in coal in northwest of China[J]. Earth Science and Technology,2016,11:31-33.
[20] DAI Shifeng,YANG Jianye,WARD C R,et al. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin,Xinjiang,northwestern China[J]. Ore Geology Reviews,2015,70:1-30.
[21] JIANG Yaofa,ZHAO Lei,ZHOU Guoqing,et al. Petrological,mineralogical,and geochemical compositions of Early Jurassic coals in the Yining coalfield,Xinjiang,China[J]. International Journal of Coal Geology,2015,152:47-67.
[22] ZENG Rongshu,ZHUANG Xinguo,KOUKOUZAS N,et al. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field,Guangxi,south China[J]. International Journal of Coal Geology,2005,61:87-95.
[23] DAI Shifeng,XIE Panpan,JIA Shaohui,et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1-17.
[24] 杨建业,狄永强,张卫国,等. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究[J]. 煤炭学报,2011,36(6):945-952. YANG Jianye,DI Yongqiang,ZHANG Weiguo,et al. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili Basin[J]. Journal of China Coal Society,2011,36(6):945-952.
[25] 刘章月,董文明,刘红旭. 新疆萨瓦布其地区含铀煤成因分析[J]. 铀矿地质,2011,27(6):345-351. LIU Zhangyue,DONG Wenming,LIU Hongxu. Analysis on genesis of uranium-bearing coal in Sawabuqi Area,Xinjiang[J]. Uranium Geology,2011,27(6):345-351.
[26] HU Ruizhong,QI Huawen,ZHOU Meifu,et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan,SW China:A review[J]. Ore Geology Reviews,2009,36:221-234.
[27] 席维实. 云南部分地区煤中铀含量概况[J]. 中国煤田地质,1992,4(3):356-358. XI Weishi. Overview of uranium content in coals in some areas of Yunnan[J]. Coal Geology of China,1992,4(3):356-358.
[28] 黄文辉,唐修义. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质,2002,14(增刊1):55-63. HUANG Wenhui,TANG Xiuyi. Uranium,thorium and other radionuclides in coal of China[J]. Coal Geology of China,2002,14(Sup.1):55-63.
[29] 杨志远,张泓,张群,等. 低煤级煤与UO2+2的吸附络合及亲煤型铀矿成矿过程[J]. 煤田地质与勘探,2009,37(5):1-5. YANG Zhiyuan,ZHANG Hong,ZHANG Qun,et al. Mechanism of uranylion adsorbing and complexing onto low-rank coal and ore-forming process of uranium associated coal measures[J]. Coal Geology & Exploration,2009,37(5):1-5.
[30] 吴兆剑,韩效忠,林中湘,等. 中国北方主要中新生代盆地构造沉积气候演化及其成煤、铀意义[J]. 大地构造与成矿学,2020,44(4):710-724. WU Zhaojian,HAN Xiaozhong,LIN Zhongxiang,et al. Tectonic,sedimentary,and climate evolution of Meso-Cenozoic basins in north China and its significance of coal accumulation and uranium mineralization[J]. Geotectonica et Metallogenia,2020,44(4):710-724.
[31] HOWER J C,DAI Shifeng,ESKENAZY G. Distribution of uranium and other radionuclides in coal and coal combustion products,with discussion of occurrences of combustion products in Kentucky power plants[J]. Coal Combustion and Gasification Products,2016,8:44-53.
[32] MOHAN M S,ILGER J D,ZINGARO R A. Speciation of uranium in a south Texas lignite:Additional evidence for a mixed mode of occurrence[J]. Energy & Fuels,1991,5:568-573.
[33] DAI Shifeng,SEREDIN V V,WARD C R,et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:Geochemical and mineralogical data from the Late Permian Guiding coalfield,Guizhou,China[J]. Miner Deposita,2015,50:159-186.
[34] DUAN Piaopiao,WANG Wenfeng,SANG Shuxun,et al. Geochemistry of Toxic elements and their removal via the preparation of high-uranium coal in southwestern China[J]. Minerals,2018,8(83):1-17.
[35] HAVELCOVA M,MACHOVIC V,MIZERA J,et al. A multi-instrumental geochemical study of anomalous uranium enrichment in coal[J]. Journal of Environmental Radioactivity,2014,137:52-63.
[36] 姜磊,蔡春芳,张永东,等. 东胜铀矿床中发现硫酸盐还原菌和硫氧化菌类脂[J]. 科学通报,2012,57(12):1028-1036. JIANG Lei,CAI Chunfang,ZHANG Yongdong,et al. Discovery of sulphate reducing bacteria and thio-oxidized bacterial lipids in Dongsheng uranium deposit[J]. Science Bulletin,2012,57(12):1028-1036.
[37] 刘继顺. 华南碳硅泥岩型铀矿床的地质特征分析[J]. 地质找矿论丛,1992,7(1):103-110. LIU Jishun. A probe on geological features of carbonate-siliceous-pelitic uranium deposits in south China[J]. Contributions to Geology and Mineral Resources Research,1992,7(1):103-110.
[38] 黄广文,余福承,潘家永,等. 新疆蒙其古尔铀矿床黄铁矿微量元素与硫同位素地球化学特征及其对铀成矿作用的指示[J/OL]. 中国地质,2019. http://kns.cnki.net/kcms/detail/11.1167.P.20191230.1721.009.html. HUANG Guangwen,YU Fucheng,PAN Jiayong,et al. Geochemical characteristics of trace elements and sulfur isotopes of pyrite from Mengqiguer uranium deposit,Xinjiang:implication for uranium mineralization[J/OL]. Geology in China,2019. http://kns.cnki.net/kcms/detail/11.1167.P.20191230.1721.009.html.
[39] 陈祖伊,郭庆银. 砂岩型铀矿床硫化物还原富集铀的机制[J]. 铀矿地质,2007,23(6):321-327. CHEN Zuyi,GUO Qingyin. Mechanism of U-reduction and concentration by sulphides at sandstone type uranium deposits[J]. Uranium Geology,2007,23(6):321-327.
[40] 张祖还,章邦桐. 华南产铀花岗岩及有关铀矿床研究[M]. 北京:原子能出版社,1991:82-83. ZHANG Zuhuan,ZHANG Bangtong. On the uranium bearing granites and their related uranium deposits in south China[M]. Beijing:Atomic Energy Press,1991:82-83.
[41] LIU Bei,MASTALERZ M,SCHIEBER J,et al. Association of uranium with macerals in marine black shales:Insights from the Upper Devonian New Albany Shale,Illinois Basin[J]. International Journal of Coal Geology,2020,217:103351.
[42] ZHOU Yiping,BOHOR B F,REN Youliang. Trace element geochemistry of altered volcanic ash layers(tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces,China[J]. International Journal of Coal Geology,2000,44:305-324.
[43] 代世峰,周义平,任德贻,等. 重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因[J]. 中国科学(D辑:地球科学),2007,37(3):353-362. DAI Shifeng,ZHOU Yiping,REN Deyi,et al. Geochemical and mineralogical characteristics and genesis of Late Permian coal in Songzao mining area,Chongqing[J]. Science in China Press(Part D:Earth Sciences),2007,37(3):353-362.
[44] DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal,Yanshan coalfield,Yunnan,China:Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology,2008,255:182-194.
[45] OLIVEIRA M L S,WARD C R,SAMPAIO C H,et al. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina,Brazil,by industrial beneficiation processes[J]. International Journal of Coal Geology,2013,116/117:75-92.
[46] 王文峰,秦勇,宋党育. 煤中有害元素的洗选洁净潜势[J]. 燃料化学学报,2003,32(4):295-299. WANG Wenfeng,QIN Yong,SONG Dangyu. Cleaning potential of hazardous elements during coal washing[J]. Journal of Fuel Chemistry and Technology,2003,32(4):295-299.
[47] WEI Cheng,YANG Ruidong,ZHANG Qin,et al. Washability and distribution behaviors of trace elements of a high-sulfur coal,SW Guizhou,China[J]. Minerals,2018,8(59):1-15.
[48] 宋党育,秦勇,张军营,等. 西部煤中环境敏感性痕量元素的燃烧迁移行为[J]. 煤炭转化,2005,28(2):56-60. SONG Dangyu,QIN Yong,ZHANG Junying,et al. Distribution of environmentally-sensitive trace elements of coal in combustion[J]. Coal Conversion,2005,28(2):56-60.
[49] YAN Rong,GAUTHIER D,FLAMANT G. Volatility and chemistry of trace elements in a coal combustor[J]. Fuel,2001,80:2217-2226.
[50] VEJAHATI F,XU Zhenghe,GUPTA R. Trace elements in coal:Associations with coal and minerals and their behavior during coal utilization:A review[J]. Fuel,2010,89:904-911.
[51] 石铭磊. 煤及燃煤发电过程中轴的分布[D]. 保定:华北电力大学,2016. SHI Minglei. Occurrence of uranium in coals and its emissions from coal-fired power plants[D]. Baoding:North China Electric Power University,2016.
[52] ZHANG Yongsheng,SHI Minglei,WANG Jiawei,et al. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants[J]. Fuel,2016,166:404-409.
[53] 刘东原,赵永椿,张军营,等. 煤燃烧和CO2气化过程中铀的释放规律[J]. 燃烧科学与技术,2016,22(6):506-512. LIU Dongyuan,ZHAO Yongchun,ZHANG Junying,et al. Release characteristics of uranium during coal combustion and CO2 gasification[J]. Journal of Combustion Science And Technology,2016,22(6):506-512.
[54] YANG Jianping,LIU Dongyuan,WANG Yujing,et al. Release and the interaction mechanism of uranium and alkaline/alkaline-earth metals during coal combustion[J]. Fuel,2016,186:405-413.
[55] 刘东原,赵永椿,张军营,等. 煤中铀及其在燃烧过程中的迁移行为研究进展[J]. 煤炭科学技术,2016,44(4):175-181. LIU Dongyuan,ZHAO Yongchun,ZHANG Junying,et al. Research progress of uranium in coal and its migration behavior during coal combustion[J]. Coal Science and Technology,2016,44(4):175-181.
[56] 黄文辉,唐修义. 煤燃烧过程中微量元素的迁移和富集[J]. 中国煤田地质,2002,14(增刊1):75-87. HUANG Wenhui,TANG Xiuyi. Mobility and concentration of trace elements during coal combustion[J]. Coal Geology of China,2002,14(Sup.1):75-87.
[57] 王晖,郝启勇,尹儿琴. 煤矸石的淋溶、浸泡对水环境的污染研究:以兖济滕矿区塌陷区充填的煤矸石为例[J]. 中国煤田地质,2006,18(2):43-45. WANG Hui,HAO Qiyong,YIN Erqin. A study on water pollution from eluvlating and immersing gangue[J]. Coal Geology of China,2006,18(2):43-45.
[58] 王德高. 淮南煤田烟煤中铀元素丰度及其淋滤特征研究[J]. 宿州学院学报,2017,32(1):122-124. WANG Degao. A study on uranium abundance and leaching characteristics in bituminous coal of Huainan coalfield[J]. Journal of Suzhou University,2017,32(1):122-124.
[59] 秦可敏. 大同矿区煤中有害微量元素的赋存特征及其环境效应[D]. 徐州:中国矿业大学,2019. QIN Kemin. Occurrence characteristics of hazardous trace elements in coal and their environmental effects in Datong mining area[D]. Xuzhou:China University of Mining and Technology,2019.
[60] 王文峰,秦勇,宋党育,等. 燃煤过程中元素的分异特征与淋滤实验研究[J]. 中国矿业大学学报, 2009,38(4):481-487. WANG Wenfeng,QIN Yong,SONG Dangyu,et al. Partitioning of elements during coal combustion and leaching experiments[J]. Journal of China University of Mining and Technology,2009,38(4):481-487.
[61] ZHAO Lei,DAI Shifeng,FINKELMAN R B,et al. Leaching behavior of trace elements from fly ashes of five Chinese coal power plants[J]. International Journal of Coal Geology,2020,219:103381.
[62] 杨永昌,莘星,纪冬平,等. 燃煤产物中微量元素的淋滤实验方案和淋滤特征[J]. 中国资源综合利用,2017,35(8):11-13. YANG Yongchang,XIN Xing,JI Dongping,et al. Leaching experiment schemes and leaching characteristics of trace elements in coal combustion products[J]. China Resources Comprehensive Utilization,2017,35(8):11-13.
[63] 孙应龙. 富铀煤灰中铀的赋存特征及其回收技术研究[D]. 北京:清华大学,2017. SUN Yinglong. Study on distribution and species of uranium in bottom ash and its recovery technique[D]. Beijing:Tsinghua University,2017.
[64] 张乐华,庄海兴,谷万成,等. 从煤灰的浸出浆体中萃取铀与从萃余浆体中沉淀锗[J]. 铀矿冶,1982,1(8):18-24. ZHANG Lehua,ZHUANG Haixing,GU Wancheng,et al. Solvent extraction of uranium from leached pulp of uraniferous lignite ash and precipitation of germanium from raffinate pulp[J]. Uranium Ming and Metallurgy,1982,1(8):18-24.
[65] 张仁里. 含铀煤灰的烧结及其对铀的包裹作用[J]. 铀矿冶,1986,5(1):7-14. ZHANG Renli. Sintering of uraniferous coal ash and its inclusion effect on uranium[J]. Uranium Ming and Metallurgy,1986,5(1):7-14.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons