•  
  •  
 

Coal Geology & Exploration

Abstract

Based on the brief analysis the evolution of "coal geology", the main progress of discipline in basic theoretical research, geological guarantee technology, coal and rock detection during the 13th five-year Plan period is reviewed emphatically, meanwhile the main problems faced and the development direction in the 14th five-year plan period and even a longer period of time are pointed out. It is considered that coal geology should around the development goals of coal industry of "providing sufficient green coal" and "reducing geological disasters in coal mine", taking the key geological theories and technical bottlenecks in green coal exploration, precise intelligent mining and clean and efficient utilization as breakthroughs in the future, the research work should focus on:① Symbiosis law, collaborative exploration technology and accurate evaluation method of development geological conditions of coal measures mineral resources; ② Development of intelligent geophysical prospecting instrument and intelligent drilling equipment; ③ Innovative experiment to detect coal seam fault attributes by pre-stack seismic inversion technology, joint exploration technology of channel wave seismic, channel wave radar detection technology, high density electrical exploration technology; ④ Multi-mode stereo detection and fine interpretation technology of in-borehole, between-borehole, roadway-borehole and between roadway; ⑤ Multi-parameter synthetic imaging technology for coal/rock interface recognition in working face; ⑥ Evolution mechanism of coal mine dynamic geological disaster under coupling superposition effect of mining stress, micro seismic monitoring and dynamic early warning by apparent resistivity method; ⑦ Depth fusion and dynamic geological modeling of multi-source heterogeneous geological and geographic information.

Keywords

coal geology, main progress, coal measures mineral resources, stereo detection, fine interpretation, dynamic geological modeling, intelligent mining, compound talents

DOI

10.3969/j.issn.1001-1986.2021.01.004

Reference

[1] 贾建称,范永贵,吴艳,等. 中国煤炭地质勘查主要进展与发展方向[J]. 中国煤炭地质,2010,22(增刊1):147-153. JIA Jiancheng,FAN Yonggui,WU Yan,et al. Main progresses and development direction of coal geological exploration in China[J]. Coal Geology of China,2010,22(Sup.1):147-153.

[2] 谢和平,钱鸣高,彭苏萍,等. 煤炭科学产能及发展战略初探[J]. 中国工程科学,2011,13(6):44-50. XIE Heping,QIAN Minggao,PENG Suping,et al. Sustainable capacity of coal mining and its strategic plan[J]. Strategic Study of CAE,2011,13(6):44-50.

[3] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960. XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.

[4] 缪富恩. 我国煤地质学发展的几个问题[J]. 科学通报,1963(4):39-44. MIU Fu'en. Some problems in the development of coal geology in China[J]. Chinese Science Bulletin,1963(4):39-44.

[5] MILICI R C,WARWICK P D,CECIL C B. Coal system analysis:A new approach to the understanding of coal formation,coal quality,environmental considerations,and coal as a source rock for hydrocarbon[EB/OL]. Http://gsa.comfex.com/gsa/2001AM/finalprogram/session596htm,2009.

[6] WARWICK P D,MILICI R C. Coal systems analysis:Geological society of America special paper 387[M]. Colorado:GSA Inc.,2005:1-8.

[7] 刘桂建,彭子成,王桂梁,等. 煤中微量元素研究进展[J]. 地球科学进展,2002,17(1):53-62. LIU Guijian,PENG Zicheng,WANG Guiliang,et al. Study on trace elements in coal[J]. Advance in Earth Sciences,2002,17(1):53-62.

[8] 陈祖兴,刘心中,翁仁贵. 煤中微量元素研究进展[J]. 能源与环境,2008(5):4-6. CHEN Zuxing,LIU Xinzhong,WENG Rengui. Research progress of micronutrient in coal[J]. Energy and Environment,2008(5):4-6.

[9] 张舒洁,陶秀祥. 煤中微量元素在分选过程中迁移规律研究进展[J]. 煤炭科学技术,2012,40(4):120-124. ZHANG Shujie,TAO Xiuxiang. Study progress on migration law of coal trace elements in preparation process[J]. Coal Science and Technology,2012,40(4):120-124.

[10] 宋党育,袁镭,白万备,等. 煤地质学研究进展与前沿[J]. 煤田地质与勘探,2016,44(4):1-7. SONG Dangyu,YUAN Lei,BAI Wanbei,et al. Advance and frontier of coal geology[J]. Coal Geology & Exploration,2016,44(4):1-7.

[11] WARD C R. Coal geology and coal technology[M]. London:Black Well Scientific Publications,1984.

[12] THOMAS L. Handbook of practical coal geology[M]. New York:John Wiley & Sons Ltd,1992.

[13] International Journal of Coal Geology editorial board. The International Journal of Coal Geology[M]. Elsvier(Science Director),2018.

[14] HSIEN C Y. On the vegetable tissue and flora in the Chinese coals and their geological signification[J]. Bulletin Geological Society of China,1932,11(3):267-300.

[15] 胡社荣,彭纪超,郝国强,等. 大地构造理论和中国4次煤田预测与潜力评价[J]. 煤田地质与勘探,2012,40(3):1-5. HU Sherong,PENG Jichao,HAO Guoqiang,et al. Geotectonic theory and the fourth prediction or potential evaluation of China's coalfields[J]. Coal Geology & Exploration,2012,40(3):1-5.

[16] 关世桥. 中国煤地质学发展历程及其影响因素分析[J]. 中国煤炭地质,2011,23(1):66-71. GUAN Shiqiao. Analysis of development course of coal geology and its impacting factors in China[J]. Coal Geology of China,2011,23(1):66-71.

[17] 张泓,张群,曹代勇,等. 中国煤田地质学的现状与发展战略[J]. 地球科学进展,2010,25(4):343-352. ZHANG Hong,ZHANG Qun,CAO Daiyong,et al. Status and development strategy of coal geology in China[J]. Advances in Earth Sciences,2010,25(4):343-352.

[18] 曹代勇,王佟,王丹,等. 煤炭地质学:涵义与发展趋势[J]. 煤炭学报,2010,35(5):765-769. CAO Daiyong,WANG Tong,WANG Dan,et al. Coal geology:Its meaning and development trend[J]. Journal of China Coal Society,2010,35(5):765-769.

[19] 曹代勇,魏迎春,宁树正. 绿色煤炭基础地质工作框架刍议[J]. 煤田地质与勘探,2018,46(3):1-5. CAO Daiyong,WEI Yingchun,NING Shuzheng. The framework of basic geological works for green coal[J]. Coal Geology & Exploration,2018,46(3):1-5.

[20] 王东东,李增学,吕大炜,等. 陆相断陷盆地煤与油页岩共生组合及其层序地层特征[J]. 地球科学,2016,41(3):508-522. WANG Dongdong,LI Zengxue,LYU Dawei,et al. Coal and oil shale paragenetic assemblage and sequence stratigraphic features in continental faulted basin[J]. Earth Science,2016,41(3):508-522.

[21] 史鸣剑,邵龙义,王帅,等. 伊敏凹陷早白垩世含煤岩系层序地层与聚煤模式[J]. 煤炭学报,2019,44(11):3491-3503. SHI Mingjian,SHAO Longyi,WANG Shuai,et al. Sequence stratigraphy and coal accumulation of the lower cretaceous in Yimin Sag[J]. Journal of China Coal Society,2019,44(11):3491-3503.

[22] 郭彪,邵龙义,马施民,等. 海拉尔盆地群下白垩统层序格架内聚煤特征与成煤模式[J]. 煤田地质与勘探,2017,45(1):14-19. GUO Biao,SHAO Longyi,MA Shimin,et al. Coal-accumulating and coal-forming patterns within sequence stratigraphy framework of Early Cretaceous in Hailar basins[J]. Coal Geology & Exploration,2017,45(1):14-19.

[23] BOHACS K M,SUTER J R. Sequence stratigraphic distribution of coaly rocks:Fundamental controls and paralic examples[J]. American Association of Petroleum Geologists Bulletin,1997,81(10):1612-1639.

[24] 傅雪海,德勒恰提·加娜塔依,朱炎铭,等. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘,2016,23(3):36-40. FU Xuehai,Deleqiati JIANATAYI,ZHU Yanming,et al. Resources characteristics and separated reservoirs' drainage of unconventional gas in coal measures[J]. Earth Science Frontiers,2016,23(3):36-40.

[25] 姜杉钰,王峰. 中国煤系天然气共探合采的战略选择与发展对策[J]. 天然气工业,2020,40(1):152-159. JIANG Shanyu,WANG Feng. Strategic choice and development countermeasures for the commingled exploration and exploitation of coal measure natural gas in China[J]. Natural Gas Industry,2020,40(1):152-159.

[26] 甘云燕,张凯亮,姚海鹏. 内蒙古鄂尔多斯地区煤系气资源及其合勘共采潜力探讨[J]. 煤炭学报,2018,43(6):1661-1668. GAN Yunyan,ZHANG Kailiang,YAO Haipeng. Discussion on potential joint mining of coal measures gases resources in Ordos area,Inner Mongolia[J]. Journal of China Coal Society,2018,43(6):1661-1668.

[27] 左兆喜,张晓波,陈尚斌,等. 煤系页岩气储层非均质性研究:以宁武盆地太原组和山西组为例[J]. 地质学报,2017,91(5):1130-1140. ZUO Zhaoxi,ZHANG Xiaobo,CHEN Shangbin,et al. Heterogeneity of shale gas reservoirs in coal measures:A case study of the Taiyuan and Shanxi Formations in the Ningwu Basin[J]. Acta Geologica Sinica,2017,91(5):1130-1140.

[28] 谢卫东,王猛,代旭光,等. 山西河东煤田中-南部煤系页岩气储层微观特征[J]. 天然气地球科学,2019,30(4):512-525. XIE Weidong,WANG Meng,DAI Xuguang,et al. Microscopic characteristics of shale gas reservoirs in middle and southern coal measures of Hedong Coalfield,Shanxi Province[J]. Natural Gas Geoscience,2019,30(4):512-525.

[29] 张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报,2019,44(增刊1):195-204. ZHANG Jizhen,LI Xianqing,ZHANG Xueqing,et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society,2019,44(Sup.1):195-204.

[30] 傅雪海,张苗,张庆辉,等. 山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654-1660. FU Xuehai,ZHANG Miao,ZHANG Qinghui,et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in Shanxi Province[J]. Journal of China Coal Society,2018,43(6):1654-1660.

[31] PENG Yanxia,GUO Shaobin,ZHAI Gangyi,et al. Determination of critical parameters for evaluating coal measure shale gas in China[J]. Marine and Petroleum Geology,2019,109:732-739.

[32] 曹代勇,秦国红,张岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150-2155. CAO Daiyong,QIN Guohong,ZHANG Yan,et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150-2155.

[33] 李增学,王东东,吕大炜,等. 煤系矿产类型及协同勘查研究进展:兼论煤地质学一些概念的规范化问题[J]. 煤炭科学技术,2018,46(4):164-176. LI Zengxue,WANG Dongdong,LYU Dawei,et al. Study progress on coal measure mineral type and coordinated exploration:Discussion on conception standardized issues of coal geology[J]. Coal Science and Technology,2018,46(4):164-176.

[34] 易同生,高为. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报,2018,43(6):1553-1564. YI Tongsheng,GAO Wei. Reservoir formation characteristics as well as co-exploration and co-mining orientation of upper permian coal-bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society,2018,43(6):1553-1564.

[35] 宁树正,曹代勇,朱士飞,等. 煤系矿产资源综合评价技术方法探讨[J]. 中国矿业,2019,28(1):73-79. NING Shuzheng,CAO Daiyong,ZHU Shifei,et al. Discussion on comprehensive evaluation technical method of coal resources[J]. China Mining Magazine,2019,28(1):73-79.

[36] 秦勇,吴建光,张争光,等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报,2020,45(1):241-257. QIN Yong,WU Jianguang,ZHANG Zhengguang,et al. Analysis of geological conditions for coalbed methane coproduction based on production characteristics in early stage of drainage[J]. Journal of China Coal Society,2020,45(1):241-257.

[37] 张晧,綦耀光,张芬娜,等. 基于不同压力体系下煤系气合采工艺的适用性研究[J]. 煤炭科学技术,2017,45(12):194-200. ZHANG Hao,QI Yaoguang,ZHANG Fenna,et al. Adaptability study on co-mining technique of coal measures gas based on different pressure system[J]. Coal Science and Technology,2017,45(12):194-200.

[38] 张芬娜,张晧,綦耀光,等. 基于煤系气双管柱分压合采技术的适用性分析[J]. 煤炭学报,2017,42(10):2657-2661. ZHANG Fenna,ZHANG Hao,QI Yaoguang,et al. Adaptability analysis on co-exploitation based on dual-tube technology in coal bearing gas[J]. Journal of China Coal Society,2017,42(10):2657-2661.

[39] 秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513-2522. QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513-2522.

[40] 吴浩,邹冲,何江永,等. 低阶煤热解条件对高炉喷吹半焦燃烧性能及动力学特性的影响[J]. 过程工程学报,2020,20(4):449-457. WU Hao,ZOU Chong,HE Jiangyong,et al. Effect of low-rank coal pyrolysis conditions on combustion performance and kinetic characteristics of semi-coke for blast furnace injection[J]. The Chinese Journal of Process Engineering,2020,20(4):449-457.

[41] CHEN Jingwei,XU Wenwen,ZHANG Feng,et al. Thermodynamic and environmental analysis of integrated supercritical water gasification of coal for power and hydrogen production[J]. Energy Conversion and Management,2019,198:111927.

[42] 王玲玉. 合成气制低碳烯烃催化剂的研究[D]. 杭州:浙江工业大学,2019. WANG Lingyu.The research of catalysts for syngas to lower olefins[D]. Hangzhou:Zhejiang University of Technology,2019.

[43] 邹成成. 合成气直接转化制烯烃催化剂研制及催化性能研究[D]. 厦门:厦门大学,2020. ZOU Chengcheng. Study on catalyzer and it's performance for syngas direct conversion to olefins[D]. Xiamen:Xiamen University,2020.

[44] 马晓文,李建军. 燃煤电厂重金属污染与控制技术研究进展[J]. 四川化工,2019,22(1):5-8. MA Xiaowen,LI Jianjun. Research progress of heavy metal pollution and control technology in coal-fired power plants[J]. Sichuan Chemical Industry,2019,22(1):5-8.

[45] HUSSAIN M,TUF L D,YUSUP S,et al. Characterization of coal bottom ash and its potential to be used as catalyst in biomass gasification[J]. Materials Today:Proceedings,2019,16(Part4):1886-1893.

[46] GUO Li,ZHAI Ming,WANG Zhentong,et al.Comparison of bituminous coal and lignite during combustion:Combustion performance,coking and slagging characteristics[J]. Journal of the Energy Institute,2019,92(3):802-812.

[47] 徐静颖,卓建坤,姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报,2019,70(8):2823-2834. XU Jingying,ZHUO Jiankun,YAO Qiang. Research progress on formation emission characteristics and sampling methods of organic compounds from coal combustion[J]. CIESC Journal,2019,70(8):2823-2834.

[48] 李德波,崔乘亮,蒋勇军,等. 煤和市政污泥掺烧的灰熔融特性研究[J]. 发电技术,2019,40(4):347-354. LI Debo,CUI Chengliang,JIANG Yongjun,et al. Investigation of fusion characteristics in co-combustion of coal with municipal sludge[J]. Power Generation Technology,2019,40(4):347-354.

[49] 王镜惠,王美冬,田锋,等. 高煤阶煤层气储层产气能力定量评价[J]. 油气地质与采收率,2019,26(4):105-110. WANG Jinghui,WANG Meidong,TIAN Feng,et al. Quantitative evaluation of production capacity of high rank coalbed methane reservoir[J]. Petroleum Geology and Recovery Efficiency,2019,26(4):105-110.

[50] 赵家攀,张永琪,张帅,等. 煤体结构对煤层气井产能的影响及其对策[J]. 中国煤层气,2017,14(2):9-12. ZHAO Jiapan,ZHANG Yongqi,ZHANG Shuai,et al. Effect of coal body structures on CBM wells' production and solutions[J]. China Coalbed Methane,2017,14(2):9-12.

[51] 胡秋嘉,贾慧敏,祁空军,等. 高煤阶煤层气井单相流段流压精细控制方法:以沁水盆地樊庄-郑庄区块为例[J]. 天然气工业,2018,38(9):76-81. HU Qiujia,JIA Huimin,QI Kongjun,et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zhengzhuang block in the Qinshui basin[J]. Natural Gas Industry,2018,38(9):76-81.

[52] 贾慧敏,胡秋嘉,祁空军,等. 煤层气流压回升型不正常井储层伤害机理与治理[J]. 煤田地质与勘探,2019,47(4):69-75. JIA Huimin,HU Qiujia,QI Kongjun,et al. Damage mechanism and countermeasures of reservoir with abnormal pickup of CBM flow pressure in well[J]. Coal Geology & Exploration,2019,47(4):69-75.

[53] 刘键烨,罗东坤,王晓宇,等. 低油价下煤层气开发区块优选方法[J]. 煤炭工程,2018,50(11):124-130. LIU Jianye,LUO Dongkun,WANG Xiaoyu,et al. Optimal selection method for coalbed methane development block under low oil price[J]. Coal Engineering,2018,50(11):124-130.

[54] 吕广罗,李文平,黄阳,等. 综放开采煤层顶板离层积水涌突特征及防治关键技术研究[J]. 中国煤炭地质,2016,28(11):55-61. LYU Guangluo,LI Wenping,HUANG Yang,et al. Coal roof abscission layer ponding water gushing and bursting characteristics and study on key technologies of prevention and control during fully mechanized mining[J]. Coal Geology of China,2016,28(11):55-61.

[55] 陈红影. 我国矿井水害的类型划分与水文结构模式研究[D]. 徐州:中国矿业大学,2019. CHEN Hongying. Study on the type classification and hydrological structure model of mine water hazards in China[D]. Xuzhou:China University of Mining & Technology,2019.

[56] 杨飞. 山西省老空突水的水文地质结构模式与致灾机制[D]. 徐州:中国矿业大学,2019. YANG Fei. Goaf-water inrush models of hydrogeologic structure and its disaster-mechanism in Shanxi Province[D]. Xuzhou:China University of Mining & Technology,2019.

[57] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449-2459. WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449-2459.

[58] 张旭辉. 随钻测量技术与钻孔轨迹控制技术的研究[J]. 现代矿业,2019,35(3):32-34. ZHANG Xuhui. Research on measurement technology while drilling and drilling trajectory control technology[J]. Modern Mining,2019,35(3):32-34.

[59] 刘宗伟. 矿用水平钻机钻孔轨迹测量与跟踪方法研究[D]. 太原:太原理工大学,2018. LIU Zongwei. Research on measurement and tracking method to trajectory for horizontal drilling machine in mine[D]. Taiyuan:Taiyuan University of Technology,2018.

[60] 赵建国,赵江鹏,许超,等. 煤矿井下复合定向钻进技术研究与应用[J]. 煤田地质与勘探,2018,46(4):202-206. ZHAO Jianguo,ZHAO Jiangpeng,XU Chao,et al. Composite directional drilling technology in underground coal mine[J]. Coal Geology & Exploration,2018,46(4):202-206.

[61] 李泉新. 煤矿井下复合定向钻进及配套泥浆脉冲无线随钻测量技术研究[D]. 北京:煤炭科学研究总院,2018. LI Quanxin. Research on technology of drilling combined rotary with direction and related mud pulse MWD[D]. Beijing:China Coal Research Institute,2018.

[62] 石智军,董书宁,杨俊哲,等. 煤矿井下3000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1-7. SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in-seam directional borehole of 3000 m in underground coal mine[J]. Coal Geology & Exploration,2019,47(6):1-7.

[63] 赵建国,刘建林,董昌乐,等. 顶板高位大直径定向钻孔扩孔新技术探索[J]. 煤炭科学技术,2018,46(4):40-45. ZHAO Jianguo,LIU Jianlin,DONG Changle,et al. New reaming technology for high position and large diameter directional drilling in roof[J]. Coal Science and Technology,2018,46(4):40-45.

[64] 王鲜,许超,李泉新,等. 淮南矿区顶板复杂地层中高位定向钻孔钻进工艺研究[J]. 煤炭科学技术,2018,46(11):145-150. WANG Xian,XU Chao,LI Quanxin,et al. Study on high-level directional borehole technology in complex roof stratum of Huainan mining area[J]. Coal Science and Technology,2018,46(11):145-150.

[65] 方俊,刘飞,李泉新,等. 煤矿井下碎软煤层空气复合定向钻进技术与装备[J]. 煤炭科学技术,2019,47(2):224-229. FANG Jun,LIU Fei,LI Quanxin,et al. Air compound directional drilling technology and equipment for soft-fragmentized seam underground coal mine[J]. Coal Science and Technology,2019,47(2):224-229.

[66] 童碧,许超,王鲜,等. 淮南矿区复杂顶板高位定向孔复合排渣钻进技术[J]. 煤炭科学技术,2020,48(增刊1):140-143. TONG Bi,XU Chao,WANG Xian,et al. Compound slag removal technology of high directional drilling for complex roof in Huainan mining area[J]. Coal Science and Technology,2020,48(Sup.1):140-143.

[67] 司瑞江. 复杂地层大直径高位定向钻孔代替高抽巷瓦斯抽采可行性及效果分析[J]. 能源与环保,2019,41(8):5-10. SI Ruijiang. Gas extraction feasibility and effect analysis of large diameter and high directional drilling in complicated strata instead of high drainage roadway[J]. China Energy and Environmental Protection,2019,41(8):5-10.

[68] 梁道富,曹建明,代茂,等. 贵州青龙煤矿碎软煤层区域瓦斯递进式抽采技术[J]. 煤田地质与勘探,2020,48(5):48-52. LIANG Daofu,CAO Jianming,DAI Mao,et al. Progressive gas extraction technology in broken soft coal seam of Qinglong coal mine,Guizhou Province[J]. Coal Geology & Exploration,2020,48(5):48-52.

[69] 徐书荣,刘飞,梁道富,等. 底板梳状钻孔在碎软煤层瓦斯治理中的应用[J]. 探矿工程(岩土钻掘工程),2019,46(7):45-50. XU Shurong,LIU Fei,LIANG Daofu,et al. Application of comb type directional drilling in broken-soft coal seam floor for gas control[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2019,46(7):45-50.

[70] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21. WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17-21.

[71] 李延军. 碎软煤层井下多点定向长钻孔水力压裂技术[J]. 煤矿安全,2018,49(6):45-48. LI Yanjun. Long multi-point underground directional drilling hydraulic fracturing technology for low-permeability weak coalbed[J]. Safety in Coal Mines,2018,49(6):45-48.

[72] 王鲜,李泉新,许超,等. 顶板复杂岩层无线随钻测量复合定向钻进技术[J]. 煤矿安全,2019,50(9):88-91. WANG Xian,LI Quanxin,XU Chao,et al. Composite directional drilling technology for wireless measurement while drilling in roof complex rock formations[J]. Safety in Coal Mines,2019,50(9):88-91.

[73] 翁明月,郝英豪,解嘉豪. 坚硬煤岩体"钻-切-压"一体化释能减冲技术研究[J]. 煤炭科学技术,2019,47(8):84-88. WENG Mingyue,HAO Yinghao,XIE Jiahao. Study on "drilling-cutting-fracturing" integrated energy dissipation technology for hard coal rock mass[J]. Coal Science and Technology,2019,47(8):84-88.

[74] 杨扬. 布尔台煤矿42107工作面强矿压显现规律及防治研究[D]. 徐州:中国矿业大学,2019. YANG yang. Study on the law of underground pressure appearance and prevention and control of No.42107 working face in Buertai coal mine[D]. Xuzhou:China University of Mining & Technology,2019.

[75] 魏宏超. 煤矿防治冲击地压大直径钻孔施工技术与装备[J]. 煤炭科学技术,2017,45(10):140-143. WEI Hongchao. Technology and equipment of large diameter borehole construction applied to prevent and control pressure bump in coal mine[J]. Coal Science and Technology,2017,45(10):140-143.

[76] 武善元,刘磊,陈军涛,等. 黄河北煤田定向钻进精准注浆防治水技术研究[J]. 煤炭科学技术,2019,47(5):34-40. WU Shanyuan,LIU lei,CHEN Juntao,et al. Research on precise grouting to prevent water disaster technology in Huanghebei Coalfield[J]. Coal Science and Technology,2019,47(5):34-40.

[77] 刘林. 新桥煤矿南一采区防治水技术研究[D]. 徐州:中国矿业大学,2019. LIU Lin. Study on water control technology in the South No.1 mining area of Xinqiao Coal Mine[D]. Xuzhou:China University of Mining & Technology,2019.

[78] 王树威. 全数字高密度三维地震勘探中地震属性预测煤层厚度的应用[J]. 能源与环保,2019,41(6):51-56. WANG Shuwei. Application on seismic attributes forecasting coal thickness of all digital high density 3D seismic exploration[J]. China Energy and Environmental Protection,2019,41(6):51-56.

[79] 孙小萍,丁清香,侯艳,等. 三维地震勘探在煤田采空区的探索与应用[C]//中国石油学会2019年物探技术研讨会论文集. 2019,1608-1611. SUN Xiaoping,DING Qingxiang,HOU Yan,et al. Probe and application of 3D seismic exploration in goaf of coalfield[C]//Anthology of geophysical exploration technology symposium in 2019,China petroleum society. 2019,1608-1611.

[80] 师素珍,谷剑英,郭家成,等. 顾桂矿区活断层三维地震解释及其发育特征研究[J]. 矿业科学学报,2019,4(4):292-298. SHI Suzhen,GU Jianying,GUO Jiacheng,et al. Study on 3D seismic interpretation and development characteristics of active faults in Gugui mining area[J]. Journal of Mining Science and Technology,2019,4(4):292-298.

[81] 袁兴赋,汪玉玲. 三维地震约束反演在煤层气储层含气量预测中的应用[J]. 能源技术与管理,2019,44(2):9-11. YUAN Xingfu,WANG Yuling. Application of 3D seismic constraint inversion to prediction of gas content in CBM reservoir[J]. Energy Technology and Management,2019,44(2):9-11.

[82] GUO Changfang,YANG Zhen,CHANG Shuai,et al. Precise identification of coal thickness by channel wave based on a hybrid algorithm[J]. Applied Sciences,2019,9(7):1493.

[83] 廉洁,李松营,滕吉文,等. 槽波探测技术的多领域应用与试验[J]. 河南理工大学学报(自然科学版),2017,36(5):35-40. LIAN Jie,LI Songying,TENG Jiwen,et al. Multi-field application and experiment of channel wave detection technology[J]. Journal of Henan Polytechnic University(Natural Science),2017,36(5):35-40.

[84] 蒋锦朋. 基于弹性波全波形反演的煤层异常体成像研究[D]. 武汉:中国地质大学(武汉),2018. JIANG Jinpeng. Imaging coal seam anomalies based on elastic full waveform inversion[D]. Wuhan:China University of Geosciences(Wuhan),2018.

[85] 王增玉,杨德义,曹志勇,等. 构造煤及夹矸对煤层AVO正演模拟结果影响分析[J]. 地球物理学进展,2018,33(2):754-759. WANG Zengyu,YANG Deyi,CAO Zhiyong,et al. Analysis on the influence of tectonic coal and parting on AVO forward modeling of coal seam[J]. Progress in Geophysics,2018,33(2):754-759.

[86] 邱长凯. 基于有理Krylov和代数多重网格的三维主动源电磁法矢量有限元正演研究[D]. 长春:吉林大学,2019. QIU Changkai. Three-dimensional vector finite-element forward modeling for controlled-source electromagnetics using rational Krylov and algebraic multigrid methods[D]. Changchun:Jilin University,2019.

[87] 张冠男. 基于第二代曲波变换的露天矿地质灾害GPR强噪音去除研究[C]//第十六届沈阳科学学术年会论文集. 2019:1-5. ZHANG Guannan. Study on GPR strong noise removal of geological disaster in open-pit mine based on second generation curvelet transform[C]//Proceedings of the 16th annual scientific conference of Shenyang. 2019:1-5.

[88] HE Tao,SHANG Haili. Direct wave denoising of low-frequency ground-penetrating radar in open pits based on empirical curvelet transform[J]. Near Surface Geophysics,2020,18(3):295-305.

[89] 邢修举,蒋齐平. 超宽综采工作面隐伏陷落柱探测技术研究[J]. 矿业安全与环保,2019,46(2):66-69. XING Xiuju,JIANG Qiping. Research on detection technology of concealed collapse column in ultra-wide fully mechanized working face[J]. Mining Safety & Environmental Protection,2019,46(2):66-69.

[90] 刘川庆,朱卫平,夏飞,等. 鄂尔多斯盆地大宁-吉县区块煤层气水平井分段压裂实践[J]. 天然气工业,2018,38(增刊1):112-117. LIU Chuanqing,ZHU Weiping,XIA fei,et al. Put CBM horizontal well staged fracturing into Daning-Jixian block practice of Ordos basin[J]. Natural Gas Industry,2018,38(Sup.1):112-117.

[91] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150-159.

[92] 许耀波,郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报,2019,44(4):1169-1177. XU Yaobo,GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society,2019,44(4):1169-1177.

[93] 张东亮. 碎软低渗煤层顶板水平井条带瓦斯预抽技术[J]. 煤矿安全,2019,50(4):72-76. ZHANG Dongliang. Strip gas pre-pumping technology in horizontal well of broken soft and low permeability coal seam roof[J]. Safety in Coal Mines,2019,50(4):72-76.

[94] 程建远,朱梦博,崔伟雄,等. 回采工作面递进式煤厚动态预测试验研究[J]. 煤炭科学技术,2019,47(1):237-244. CHENG Jianyuan,ZHU Mengbo,CUI Weixiong,et al. Experimental study of coal thickness progressive prediction in working face[J]. Coal Science and Technology,2019,47(1):237-244.

[95] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

[96] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

[97] 王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术[J]. 工矿自动化,2020,46(5):39-42.WANG Feng. Concept,realization path and key technologies of intelligent mining based on transparent longwall face[J]. Industry and Mine Automation,2020,46(5):39-42.

[98] 王慧. 基于压缩感知的煤岩显微组分惰质组分类[D]. 马鞍山:安徽工业大学,2018.WANG Hui. Compressive sensing based classification of macerals of inertinite in coal[D]. Maanshan:Anhui University of Technology,2018.

[99] 赵俊国. 一种应用于煤岩自动化检测的焦距自动识别及控制技术:CN108344741A[P]. 2018-07-31. ZHAO Junguo. An automatic focus and control technology applied to coal automatic recognition:CN108344741A[P]. 2018-07-31.

[100] 宋孝忠,张群. 煤岩显微组分组图像自动识别系统与关键技术[J]. 煤炭学报,2019,44(10):3085-3097. SONG Xiaozhong,ZHANG Qun. Automatic image recognition system and key technologies of maceral group[J]. Journal of China Coal Society,2019,44(10):3085-3097.

[101] 宋孝忠. 煤岩显微图像假边界对显微组分组自动识别的影响[J]. 煤田地质与勘探,2019,47(6):45-50. SONG Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration,2019,47(6):45-50.

[102] 贾建称,陈晨,董夔,等. 碎软低渗煤层顶板水平井分段压裂高效抽采煤层气技术研究[J]. 天然气地球科学,2017,28(12):1873-1881. JIA Jiancheng,CHEN Chen,DONG Kui,et al. Research on the technology of high efficient to drainage CBM by multistage fracturing in horizontal well along the roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2017,28(12):1873-1881.

[103] 李彬刚. 芦岭煤矿碎软低渗煤层高效抽采技术[J]. 煤田地质与勘探,2017,45(4):81-84. LI Bingang. Technology of CBM extraction in the crushed and soft coal seam in Luling coal mine[J]. Coal Geology & Exploration,2017,45(4):81-84.

[104] 申建,张春杰,秦勇,等. 鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J]. 天然气地球科学,2017,28(3):479-487. SHEN Jian,ZHANG Chunjie,QIN Yong,et al. Effect factors on co-mining of sandstone gas and coalbed methane in coal series and threshold of parameter in Linxing block,Ordos Basin[J]. Natural Gas Geoscience,2017,28(3):479-487.

[105] 郭银景,巨媛媛,范晓静,等. 槽波地震勘探研究进展[J]. 煤田地质与勘探,2020,48(2):216-227. GUO Yinjing,JU Yuanyuan,FAN Xiaojing,et al. Progress in research of in-seam seismic exploration[J]. Coal Geology & Exploration,2020,48(2):216-227.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.