•  
  •  
 

Coal Geology & Exploration

Abstract

The physical and chemical properties of macerals are important factors affecting the clean and efficient utilization of coal and the physical properties of coal reservoirs. It has been recognized that the essential cause of determining the properties of macerals lies in their macromolecular structure. In order to reveal the evolution characteristics of macromolecular structure of macerals and its controlling factors, the research progresses at home and abroad were summarized and the shortcomings were analyzed from several aspects, such as the chemical and physical structure of macromolecules, the tectonic stress effect on the macromolecular evolution, and the evolution characteristics of macromolecules in the whole stage of coal metamorphism. The extensive distribution and important industrial use of vitrinite-rich coal make it the main research object of coal macromolecular structure, while reach on inertinite is relatively less, which hinders the comprehensive understanding of coal characteristics. Putting forward an research idea that the thermal-stress condition of coal metamorphism determines the microstructure evolution of macerals, and the macromolecular structure evolution of inertinite and vitrinite is different. Then, the high temperature and pressure simulation, artificial thermal simulation experiments of vitrinite/inertinite were carried out and compared with the natural evolution sequence of metamorphic-deformed coal, to study the microstructure evolution characteristics and their controlling factors of macerals. The objectives of the study are to characterize quantitatively the relationship between macromolecular structure of macerals and temperature/pressure conditions, to reveal the tectonic stress control on the chemical structure and nanopore structure of macerals, to identify the evolution path of macromolecular structure of inertinite in the whole process of coal metamorphism, and to establish the dynamic model of macromolecular dynamics of inertinite. The above results will enrich the overall understanding of microstructure evolution and its controlling factors, and provide the scientific basis for clean and efficient utilization of coal and evaluation of physical properties of coal reservoir.

Keywords

macerals, inertinite, macromolecular structures, dynamic mechanism, research progress

DOI

10.3969/j.issn.1001-1986.2021.01.002

Reference

[1] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社,2002. XIE Kechang. Coal structure and its reactivity[M]. Beijing:Science Press,2002.

[2] 曾凡桂,谢克昌. 煤结构化学的理论体系与方法论[J]. 煤炭学报,2004,29(4):443-447. ZENG Fangui,XIE Kechang. Theoretical system and methodology of coal structural chemistry[J]. Journal of Coal Society,2004,29(4):443-447.

[3] MATHEWS J P,CHAFFEE A L. The molecular representations of coal:A review[J]. Fuel,2012,96:1-14.

[4] STACH E,MACKOWSKY M T H,TECHMULLER M,et al. Stach's textbook of coal petrology,3rd ed[M]. Berlin:Gebruder Borntraeger,1982.

[5] 李国玲,秦志宏,倪中海. 煤岩显微组分的性质研究进展[J]. 辽宁大学学报(自然科学版),2013,40(1):54-61. LI Guoling,QIN Zhihong,NI Zhonghai. Advances in the characteristics of coal macerals[J]. Journal of Liaoning University(Natural Sciences Edition),2013,40(1):54-61.

[6] 韩德馨. 中国煤岩学[M]. 徐州:中国矿业大学出版社,1996. HAN Dexin. Coal petrology of China[M]. Xuzhou:China University of Mining and Technology Press,1996.

[7] 黄文辉,唐书恒,唐修义,等. 西北地区侏罗纪煤的煤岩学特征[J]. 煤田地质与勘探,2010,38(4):1-6. HUANG Wenhui,TANG Shuheng,TANG Xiuyi,et al. The Jurassic coal petrology and the research significance of Northwest China[J]. Coal Geology & Exploration,2010,38(4):1-6.

[8] 杨起,吴冲龙,汤达祯,等. 中国煤变质作用[M]. 北京:煤炭工业出版社,1996. YANG Qi,WU Chonglong,TANG Dazhen,et al. Coal metamorphism in China[M]. Beijing:China Coal Industry Publishing House,1996.

[9] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994. QIN Yong. Micropetrology and structural evolution of high rank coals in P. R. China[M]. Xuzhou:China University of Mining and Technology Press,1994.

[10] CAO Yunxing,DAVIS A,LIU R,et al. The influence of tectonic deformation on some geochemical properties of coals a possible indication of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69-79.

[11] 琚宜文,姜波,王桂梁,等. 构造煤结构及储层物性[M]. 徐州:中国矿业大学出版社,2005. JU Yiwen,JIANG Bo,WANG Guiliang,et al. Structure of deformed-coal and reservoir properties[M]. Xuzhou:China University of Mining and Technology Press,2005.

[12] 姜波,秦勇,琚宜文,等. 构造煤化学结构演化与瓦斯特性耦合机理[J]. 地学前缘,2009,16(2):262-271. JIANG Bo,QIN Yong,JU Yiwen,et al. The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J]. Earth Science Frontiers,2009,16(2):262-271.

[13] HOU Quanlin,LI Huijun,FAN Junjia,et al.Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China:Earth Science,2012,55(11):1755-1763.

[14] NIEKERK D V,JONATHAN P,MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel,2010,89(1):73-82.

[15] LIU Yu,ZHU Yanming,LIU Shimin,et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19-30.

[16] RAJAK P K,SINGH V K,SINGH P K. Distribution of inertinites in the Early Paleogene lignites of western India:On the possibility of wildfire activities[J]. Journal of the Geological Society of India,2019,93(5):523-532.

[17] HUDSPITH V A,BELCHER C M. Some semifusinite in coal may form during diagenesis,not wildfires[J]. International Journal of Coal Geology,2020,218. doi:10.1016/j.coal.2019.103360.

[18] 罗陨飞. 煤的大分子结构研究:煤中惰质组结构及煤中氧的赋存状态[D]. 北京:煤炭科学研究总院,2002. LUO Yunfei. Macromolecular structure of coal:Structure of inertinite in coal and occurrence of oxygen in coal[D]. Beijing:China Coal Research Institute,2002.

[19] MOROENG O M,KEARTLAND J M,ROBERTS J,et al. Characterization of coal using electron spin resonance:Implications for the formation of inertinite macerals in the Witbank Coalfield,South Africa[J]. International Journal of Coal Science and Technology,2018,5(3):385-398.

[20] 蔺华林,李克健,章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报,2013,41(6):641-648. LIN Hualin,LI Kejian,ZHANG Xuwen. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. Journal of Fuel Chemistry and Technology,2013,41(6):641-648.

[21] FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A,1951,209(1097):196-218.

[22] HIRSCH P B. X-ray Scattering from coals[J]. Proceedings of the Royal Society B:Biological Sciences,1954,226:143-169.

[23] GRIMES W R. The physical structure of coal[M]//GORBATY M L,LARSEN J W,WENDER I. Coal Science. New York:Academic Press,1982.

[24] 琚宜文,姜波,侯泉林,等. 煤岩结构纳米级变形与变质变形环境的关系[J]. 科学通报,2005,50(17):1884-1892. JU Yiwen,JIANG Bo,HOU Quanlin,et al. Relationship between nano-scale deformation of coal and rock structure and metamorphic deformation environment[J]. Chinese Science Bulletin,50(17):1884-1892.

[25] MASTALERZ M,DROBNIAK A,STRĄPOĆ D,et al. Variations in pore characteristics in high volatile bituminous coals:Implications for coalbed gas content[J]. International Journal of Coal Geology,2008,76(3):205-216.

[26] OKOLO G N,EVERSON R C,NEOMAGUS H W J P. Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel,2015,141:293-304.

[27] 钟玲文,张新民. 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探,1990,18(4):29-36. ZHONG Lingwen,ZHANG Xinmin. Relationship Between adsorption capacity of coal and the coalification degree and coal rock composition[J]. Coal Geology & Exploration,1990,18(4):29-36.

[28] CROSDALE P J,BEAMISH B B,VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology,1998,35(1/2/3/4):147-158.

[29] 李振涛,姚艳斌,周鸿璞,等. 煤岩显微组成对甲烷吸附能力的影响研究[J]. 煤炭科学技术,2012,40(8);125-128. LI Zhentao,YAO Yanbin,ZHOU Hongpu,et al. Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology,2012,40(8);125-128.

[30] SHAN Chang'an,ZHANG Tingshan,LIANG Xing,et al. On the fundamental difference of adsorption-pores systems between vitrinite-and inertinite-rich anthracite derived from the southern Sichuan Basin,China[J]. Journal of Natural Gas Science & Engineering,2018,53:32-44.

[31] 刘常洪. 煤的孔隙结构及其对甲烷的吸附特征[D]. 淮南:淮南矿业学院,1991. LIU Changhong. Pore structure of coal and its adsorption characteristics for methane[D]. Huainan:Huainan Mining Institute,1991.

[32] 刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]. 徐州:中国矿业大学,2019. LU Yu. Effect of coal vitrinite macromolecular structure evolution on methane adsorption capacity at molecular level[D]. Xuzhou:China University of Mining and Technology,2019.

[33] TODA Y,HATAMI M,TOYODA S,et al. Micropore structure of coal[J]. Fuel,1971,50(2):187-200.

[34] 郭卫坤. 煤镜质组纳米孔随煤化进程演化规律及机制[D]. 徐州:中国矿业大学,2016. GUO Weikun. Evolution law and mechanism of coal vitrinite nanopore with coalification process[D]. Xuzhou:China University of Mining and Technology,2016.

[35] WANG Anmin,CAO Daiying,WEI Yingchun,et al. Comparison of nanopore evolution in vitrinite and inertinite in coalbed methane reservoirs during coalification[J]. Journal of Natural Gas Science and Engineering,2020. Doi:10.1016/j.jngse. 2020.103289.

[36] LAXMINARAYANA C,CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin,Australia coals[J]. International Journal of Coal Geology,1999,40(4):309-325.

[37] CHALMERS G R L,MARC BUSTIN R. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology,2007,69(4):288-304.

[38] 张丽萍,苏现波,曾荣树. 煤体性质对煤吸附容量的控制作用探讨[J]. 地质学报,2006,80(6):910-915. ZHANG Liping,SU Xianbo,ZENG Rongshu. Discussion on the controlling effects of coal properties on coal adsorption capacity[J]. Acta Geologica Sinica,2006,80(6):910-915.

[39] SAJGO C S,MCEVOY J,WOLF G A. Influence of temperature and pressure on maturation process Ⅰ,preliminary report[J]. Organic Geochemistry,1986,10:331-337.

[40] CAO Daiyong,LI Xiaoming,ZHANG Shouren. Influence of tectonic stress on coalification:Stress degradation mechanism and stress polycondensation mechanism[J]. Science in China D:Earth Sciences,2007,50(1):43-54.

[41] 张玉贵,张子敏,张小兵,等. 构造煤演化的力化学作用机制[J]. 中国煤炭地质,2008,20(10):11-13. ZHANG Yugui,ZHANG Zimin,ZHANG Xiaobing,et al. Mechanochemical action mechanism of tectonically deformed coal evolvement[J]. Coal Geology of China,2008,20(10):11-13.

[42] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局与构造控煤作用[M]. 北京:科学出版社,2018. CAO Daiyong,NING Shuzheng,GUO Aijun,et al. Tectonic framework of coalfields and tectonic control of coal seams in China[M]. Beijing:China Science Publishing,2018.

[43] 张玉贵,张子敏,曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报,2007,32(3):281-284. ZHANG Yugui,ZHANG Zimin,CAO Yunxing. Deformed-coal structure and control to coal-gas outburst[J]. Journal of Coal Society,2007,32(3):281-284.

[44] 王恩营,易伟欣,李运波. 华北板块构造煤分布及成因机制[M]. 北京:科学出版社,2015. WANG Enying,YI Weixin,LI Yunbo. Distribution and genetic mechanism of tectonic coal in north China Plate[M]. Beijing:Science Press,2015.

[45] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350-359.

[46] LI Xiaoshi,JU Yiwen,HOU Quanlin,et al. Spectra response from macromolecular structure evolution of tectonically deformed coal of different deformation mechanisms[J]. Science China:Earth Sciences,2012,55:1269-1279.

[47] SONG Yu,JIANG Bo,QU Meijun. Macromolecular evolution and structural defects in tectonically deformed coals[J]. Fuel,2019,236:1432-1445.

[48] LIU Hewu,JIANG Bo,SONG Yu et al. The tectonic stress-driving alteration and evolution of chemical structure for low-to medium-rank coals-by molecular simulation method[J]. Arabian Journal of Geosciences,2019,12. Doi.org/10.1007/s 12517-019-4909-8.

[49] 曹代勇,王路,刘志飞,等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探,2020,48(1):1-11. CAO Daiyong,WANG Lu,LIU Zhifei,et al. The research status and prospect of coal-based graphite in China[J]. Coal Geology & Exploration,2020,48(1):1-11.

[50] ROUZAUD J N,OBERLIN A. Structure,microtexture,and optical properties of anthracene and saccharose-based carbons[J]. Carbon,1989,27(4):517-529.

[51] 莫如爵,刘绍斌,黄翠蓉,等. 中国石墨矿床地质[M]. 北京:中国建筑工业出版社,1989. MO Rujue,LIU Shaobin,HUANG Cuirong,et al. Geology of graphite deposits in China[M]. Beijing:China Architecture & Building Press,1989.

[52] BUSECK P R,BEYSSAC O. From organic matter to graphite:Graphitization[J]. Elements,2014,10:421-426.

[53] BONIJOLY M,OBERLIN M,OBERLIN. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology,1982,1(4):283-312.

[54] BUSTIN R M,ROUZAUD J N,ROSS J V. Natural graphitization of anthracite:Experimental considerations[J]. Carbon,1995,33(5):679-691.

[55] WANG Lu,CAO Daiyong,PENG Yangwen,et al. Strain-induced graphitization mechanism of coal-based graphite from Lutang,Hunan Province,China[J]. Minerals,2019,9(10):617.

[56] BUSTIN R M,ROSS J V,MOFFAT I. Vitrinite anisotropy under differential stress and high confining pressure and temperature:Preliminary observations[J]. International Journal of Coal Geology,1986,6(4):343-351.

[57] 周建勋,邵震杰,王桂梁. 煤光性组构的实验变形研究[J]. 科学通报,1993,38(2):147-150. ZHOU Jianxun,SHAO Zhenjie,WANG Guiliang. Study on the deformation experimental of optical fabric of coal[J]. Chinese Science Bulletin,1993,38(2):147-150.

[58] 姜波,秦勇,金法礼. 煤变形的高温高压实验研究[J]. 煤炭学报,1997,22(1):80-84. JIANG Bo,QIN Yong,JIN Fali. Coal deformation test under high temperature and confining pressure[J]. Journal of Coal Society,1997,22(1):80-84.

[59] 侯泉林,雒毅,宋超,等. 中煤级煤变形产气过程及其机理探讨[J]. 煤炭学报,2014,39(8):1675-1682. HOU Quanlin,LUO Yi,SONG Chao,et al.Gas generation during middle-rank coal deformation and the preliminary discussion of the mechanism[J]. Journal of Coal Society,2014,39(8):1675-1682.

[60] ROSS J V,BUSTIN R M. The role of strain energy in creep graphitization of anthracite[J]. Nature,1990,343:58-60.

[61] WILKS K R,MASTALERZ M,BUSTIN R M,et al. The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal[J]. International Journal of Coal Geology,1993,22(3/4):247-277.

[62] TEICHMULLER M. Coalification[M]//FREY M,ed. Low temperature metarmorphism. Blackie:New York,1987.

[63] WANG Lu,QIN Rongfang,LI Yu,et al. On the difference of graphitization behavior between vitrinite-and inertinite-rich anthracites during heat treatment[J]. Energy Sources,Part A,2019b. Doi:10.1080/15567036.2019.1656681.

[64] 张晓欠. 神府煤及其煤岩组分催化石墨化研究[D]. 西安:西安科技大学,2014. ZHANG Xiaoqian. Study on catalytic graphitization of Shenfu coal and macerals[D]. Xi'an:Xi'an University of Science and Technology,2014.

[65] 曹代勇,李小明,占文峰,等. 大别山北麓杨山煤系高煤级煤的变形变质作用研究[M]. 北京:地质出版社,2012. CAO Daiyong,LI Xiaoming,ZHAN Wenfeng,et al. Study on deformation and metamorphism of high rank coal of Yangshan coal measures in the north of Dabie Mountains[M]. Beijing:Geological Publishing House,2012.

[66] CAO Daiyong,ZHANG He,DONG Yeji,et al. Nanoscale microscopic features and evolution sequence of coal-based graphite[J]. Journal of Nanoscience and Nanotechnology,2017,17:6276-6283.

[67] 王路,曹代勇,丁正云,等. 闽西南地区煤成石墨的控制因素与成矿区带划分[J]. 煤炭学报,2020,45(8):2865-2871. WANG Lu,CAO Daiyong,DING Zhengyun,et al. Controlling factors and metallogenic belts of coal-based graphite in the south-western Fujian Province[J]. Journal of Coal Society,2020,45(8):2865-2871.

[68] 曹代勇,张守仁,任德贻. 构造变形对煤化作用进程的影响[J]. 地质论评,2002,8(3):313-317. CAO Daiyong,ZHANG Shouren,REN Deyi. The influence of structural deformation on coalification[J]. Geological Review,2002,8(3):313-317.

[69] LIU Xianfeng,SONG Dazhao,HE Xueqiu,et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel,2019,245:188-197.

[70] 范顺利,李云波,宋党育,等. 不同变形机制下构造煤大分子结构演化机理[J]. 煤炭科学技术,2019,47(11):239-246. FAN Shunli,LI Yunbo,SONG Dangyu,et al.Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms[J]. Coal Science and Technology,2019,47(11):239-246.

[71] 刘俊来,杨光,马瑞. 高温高压实验变形煤流动的宏观与微观力学表现[J]. 科学通报,2005,50(增刊1):56-63. LIU Junlai,YANG Guang,MA Rui. Macroscopic and micromechanics behavior of deformed coal flow at high temperature and high pressure[J]. Chinese Science Bulletin,2005,50(Sup.1):56-63.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.