•  
  •  
 

Coal Geology & Exploration

Abstract

Speedy drivage urgently needs to build a high-precision two-dimensional geological model. Taking the XY-S working face of Qinshui coalfield as an example, based on the results of 3D seismic interpretation, the coal seam floor elevation measured during excavation is used to update in succession the 3D seismic average velocity field and the coal seam floor elevation ahead, thus the prediction accuracy ahead of heading is analyzed statistically. The results show that the error between the predicted coal seam floor profile and the actual exposed profile decreases gradually by constantly making use of the measured coal seam floor elevation, upgrading the average velocity field and mapping the geological section in front of the drivage. The minimum absolute error of floor elevation in the range of 25 m and 50 m ahead of the measured point is as small as 0.2 m and 0.45 m respectively. The prediction accuracy will be further improved if the measured points data become larger in density and evenly distributed, and it can provide high-precision coal seam floor navigation data for speedy drivage.

Keywords

heading face, average velocity field, successive transparency, 2D geological model

DOI

10.3969/j.issn.1001-1986.2021.01.028

Reference

[1] 王国法,刘峰,庞义辉,等. 煤矿智能化-煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:The core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.

[2] 刘送永,张德义. 巷道掘进机智能化技术研究现状及展望[J]. 工矿自动化,2019,45(10):23-28. LIU Songyong,ZHANG Deyi. Research status and prospect of intelligentization technology of road header[J]. Industry and Mine Automation,2019,45(10):23-28.

[3] 雷毅. 我国井工煤矿智能化开发技术现状及发展[J]. 煤矿开采,2017,22(2):1-4. LEI Yi. Present situation and development of underground mine intelligent development technology in domestic[J]. Coal Mining Technology,2017,22(2):1-4.

[4] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005. YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005.

[5] 杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055. YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.

[6] 刘再斌,董书宁,李鹏,等. 智能开采透明工作面技术架构与展望[J]. 智能矿山,2020,1(1):46-51. LIU Zaibin,DONG Shuning,LI Peng,et al. Technology architecture and prospects of transparent intelligent operating environment for coal mining[J]. Journal of Intelligent Mine,2020,1(1):46-51.

[7] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10. WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.

[8] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41. WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.

[9] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285-2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285-2295.

[10] 任亚平. 槽波地震勘探在煤矿大型工作面的应用[J]. 煤田地质与勘探,2015,43(3):102-104. REN Yaping. Application of ISS in supper large coal face[J]. Coal Geology & Exploration,2015,43(3):102-104.

[11] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.

[12] 程建远,王寿全,宋国龙. 地震勘探技术的新进展与前景展望[J]. 煤田地质与勘探,2009,37(2):55-58. CHENG Jianyuan,WANG Shouquan,SONG Guolong. The new development and foreground expectation of seismic exploration[J]. Coal Geology & Exploration,2009,37(2):55-58.

[13] 张夏阳. 煤矿巷道前方中小型断层地震波特征及应用研究[D]. 北京:中国矿业大学(北京),2016. ZHANG Xiayang. Study on seismic wave characteristics of small and medium scale faults ahead of mine roadway and application[D]. Beijing:China University of Mining and Technology (Beijing),2016.

[14] 段天柱,赵洪月,胡运兵,等. 煤矿掘进巷道地震反射波超前探测技术及应用[J]. 矿业安全与环保,2013,40(2):80-82. DUAN Tianzhu,ZHAO Hongyue,HU Yunbing,et al. Advance detection technology with seismic reflection wave and its application in coal mine roadway excavation[J]. Mining Safety and Environmental Protection,2013,40(2):80-82.

[15] 董海杰,李飞,谢俊,等. 巷道掘进中地震超前探测波场特征研究[J]. 煤矿安全,2013,44(1):31-35. DONG Haijie,LI Fei,XIE Jun,et al. Study on seismic advanced detection wave field characteristics in roadway heading[J]. Safety in Coal Mines,2013,44(1):31-35.

[16] 杨思通. 矿井巷道地震超前探测三维全波场数值模拟与探测方法研究[D]. 青岛:山东科技大学,2011. YANG Sitong. 3D full wavefield numerical simulation of seismic advanced detection in coal roadway and study of detection method[D]. Qingdao:Shandong University of Science and Technology,2011.

[17] 杨焱钧,朱书阶,张孝文,等. 反射槽波探测技术中速度分析方法研究[J]. 煤田地质与勘探,2020,48(5):218-224. YANG Yanjun,ZHU Shujie,ZHANG Xiaowen,et al. Velocity analysis method of reflected in-seam wave detection technique[J]. Coal Geology & Exploration,2020,48(5):218-224.

[18] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):37-40. YANG Hui. Application of reflected in-seam waves in detecting small structure in Heshun mining area of Yangquan Coal Group[J]. Coal Geology & Exploration,2018,46(Sup.1):37-40.

[19] 朱光明,李桂花,程建远. 煤矿巷道内地震勘探的数值模拟[J]. 煤炭学报,2008,33(11):1263-1267. ZHU Guangming,LI Guihua,CHENG Jianyuan. Numerical simulation of seismic survey in coal mine roadway[J]. Journal of China Coal Society,2008,33(11):1263-1267.

[20] 覃思,程建远,胡继武,等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报,2015,40(3):636-639. QIN Si,CHENG Jianyuan,HU Jiwu,et al. Coal-seam-ground seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society,2015,40(3):636-639.

[21] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

[22] 程建远,朱梦博,崔伟雄,等. 回采工作面递进式煤厚动态预测试验研究[J]. 煤炭科学技术,2019,47(1):237-244. CHENG Jianyuan,ZHU Mengbo,CUI Weixiong,et al. Experimental study of coal thickness progressive prediction in working face[J]. Coal Science and Technology,2019,47(1):237-244.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.