Coal Geology & Exploration
Abstract
Any mine water hazard will show different omens. In order to consolidate the foundation of intelligent early warning of water disaster, the connotation of system construction of perception, identification, evaluation, prediction and the interlogical relation are clarified. The mechanism of water inrush is varred for different types of water hazards, we designed three types of multi-mode water inrush typical scenarios and established the corresponding water inrush criteria. In addition, so we proposed two kinds of forecasting methods, namely the precise prediction of deterministic theory and the non-deterministic trend projections including big data and deep learning, which laid a solid theoretical foundation for the prediction, warning criteria and threshold setting of the intelligent early warning system. Taking Tingnan Coal Mine of Binchang mining area in Shaanxi Province as an example, we established an index system of dynamic information, static information and related information, which integrated the ground hydrological dynamic monitoring unit, underground hydrological environment monitoring unit and mining dynamic monitoring unit of mining face, and built an in-situ acquisition and water-inrush element prediction perception system. Based on the dynamic monitoring of electrical parameters of key layers and the joint arrangement of single point or multi-point and multi-parameter monitoring of key parts, the accurate acquisition scheme of water inrush precursor information was implemented. The deterministic simulation model and the non-deterministic intelligent model were adopted to realize the prediction and early warning function of water disasters. According to the multi-source data fusion and spatial linkage analysis technology, the early warning system realized the visual display of "one map" of the whole space water disaster early warning on surface and underground. The results prove that the monitoring and early warning platform has a solid theoretical foundation, and the prediction and early warning effect is remarkable.
Keywords
mine water hazard, hydrological information monitoring, forecasting and early warning, one map, early warning system, Tingnan Coal Mine
DOI
10.3969/j.issn.1001-1986.2021.01.021
Recommended Citation
LIAN Huiqing, XU Bin, TIAN Zhentao,
et al.
(2021)
"Design and implementation of mine water hazard monitoring and early warning platform,"
Coal Geology & Exploration: Vol. 49:
Iss.
1, Article 22.
DOI: 10.3969/j.issn.1001-1986.2021.01.021
Available at:
https://cge.researchcommons.org/journal/vol49/iss1/22
Reference
[1] 虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005. HU Weiyue. Theory and method of mine water disaster control[M]. Beijing:China Coal Industry Publishing House,2005.
[2] 李振栓,尹尚先,马积福. 煤矿水情监测预警保障系统[M]. 太原:山西人民出版社,2014. LI Zhenshuan,YIN Shangxian,MA Jifu. Coal mine water monitoring and early warning system[M]. Taiyuan:Shanxi People's Publishing House,2014.
[3] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627. QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627.
[4] 尹尚先. 煤层底板突水模式及机理研究[J]. 西安科技大学学报,2009,29(6):661-665. YIN Shangxian. Modes and mechanism for water inrushes from coal seam floor[J]. Journal of Xi'an University of Science and Technology,2009,29(6):661-665.
[5] JIN Dewu,ZHENG Gang,LIU Zaibin,et al. Real-time monitoring and early warning techniques of water inrush through coal floor[J]. Procedia Earth and Planetary Science,2011,3:37-46.
[6] GE Maochen. Efficient mine microseismic monitoring[J]. International Journal of Coal Geology,2005,64(1/2):44-56.
[7] HARTEIS S P,DOLINAR D R. Water and slurry bulkheads in underground coal mines:Design,monitoring and safety concerns[J]. Mining Engineering,2006,58(12):41-47.
[8] 胡耀青,赵阳升,杨栋,等. 承压水上采煤突水的区域监控理论与方法[J]. 煤炭学报,2000,25(3):252-255. HU Yaoqing,ZHAO Yangsheng,YANG Dong,et al. The Regional monitor theory and method of water-outburst for coal mining over confined aquifer[J]. Journal of China Coal Society,2000,25(3):252-255.
[9] 武强,解淑寒,裴振江,等. 煤层底板突水评价的新型实用方法Ⅲ:基于GIS的ANN型脆弱性指数法应用[J]. 煤炭学报,2007,32(12):1301-1306. WU Qiang,XIE Shuhan,PEI Zhenjiang,et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ:The application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society,2007,32(12):1301-1306.
[10] 杨天鸿,唐春安,谭志宏,等. 岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J]. 岩石力学与工程学报,2007,26(2):268-277. YANG Tianhong,TANG Chun'an,TAN Zhihong,et al. State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(2):268-277.
[11] 靳德武,刘英锋,冯宏,等. 煤层底板突水监测预警系统的开发及应用[J]. 煤炭科学技术,2011,39(11):14-17. JIN Dewu,LIU Yingfeng,FENG Hong,et al. Development and application of monitoring and early warning system to seam floor water inrush[J]. Coal Science and Technology,2011,39(11):14-17.
[12] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264. JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264.
[13] 赵春虎. 孤岛工作面底板破坏深度微震测试与模拟分析[J]. 煤田地质与勘探,2019,47(4):110-116. ZHAO Chunhu. Microseismic test and numerical simulation analysis of floor failure depth of isolated coal mining face[J]. Coal Geology & Exploration,2019,47(4):110-116.
[14] 姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932-1938. JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938.
[15] 王经明,董书宁,刘其声. 煤矿突水灾害的预警原理及其应用[J]. 煤田地质与勘探,2005,33(增刊1):1-4. WANG Jingming,DONG Shuning,LIU Qisheng. The principal of early warning for groundwater hazards in coal mine and its application[J]. Coal Geology & Exploration,2005,33(Sup.1):1-4.
[16] 尹尚先,王经明,梁育龙,等. 矿井突水灾害监测预警系统及其控制方法:CN101526010[P]. 2009-09-09. YIN Shangxian,WANG Jingming,LIANG Yulong,et al. Mine water inrush disaster monitoring and early warning system and its control method:CN101526010[P]. 2009-09-09.
[17] 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术[J]. 煤田地质与勘探,2019,47(5):9-15. LIU Demin,YIN Shangxian,LIAN Huiqing. Evaluation technology for key monitoring area of early warning of water inrush from the floor of working face in coal mine[J]. Coal Geology & Exploration,2019,47(5):9-15.
[18] 刘德民,尹尚先,连会青,等. 煤矿底板突水定量预警准则及预警系统研究[J]. 煤炭工程,2019,51(4):16-20. LIU Demin,YIN Shangxian,LIAN Huiqing,et al. Study on quantitative warning criteria and early warning system for water inrush from coal floor[J]. Coal Engineering,2019,51(4):16-20.
[19] 张碧云,刘王梅,程俊文,等. 聚类分析和主成分分析法研究桑黄气相色谱-质谱指纹图谱[J]. 食品与发酵科技,2020,56(4):91-97. ZHANG Biyun,LIU Wangmei,CHENG Junwen,et al. Cluster analysis and principal component analysis were used to study the chromatography-mass spectrometry fingerprints of Sanghuangporus sanghuang[J]. Food and Fermentation Sciences & Technology,2020,56(4):91-97.
[20] 李艳双,曾珍香,张闽,等. 主成分分析法在多指标综合评价方法中的应用[J]. 河北工业大学学报,1999,28(1):96-99. LI Yanshuang,ZENG Zhenxiang,ZHANG Min,et al. Application of primary component analysis in the methods of comprehensive evaluation for many indexes[J]. Journal of Hebei University of Technology,1999,28(1):96-99.
[21] 尹尚先,武强. 陷落柱概化模式及突水力学判据[J]. 北京科技大学学报,2006,28(9):812-817. YIN Shangxian,WU Qiang. Generalized modes and academic criterions of water inrush from paleo-sinkholes[J]. Journal of University of Science and Technology Beijing,2006,28(9):812-817.
[22] 刘德民. 华北型煤田矿井突水机理及预警技术:以赵庄矿为例[D]. 北京:中国矿业大学(北京),2015. LIU Demin. Mechanism of water-inrush and early warning technology in North-China-Type coalfield:A case study of Zhaozhuang Mine[D]. Beijing:China University of Mining & Technology(Beijing),2015.
[23] 王苗. 基于灰色理论的矿井顶板涌水量预测模型的建立与应用[D]. 青岛:山东科技大学,2007. WANG Miao. Study on forecast model of mine roof water inrush based on grey system[D]. Qingdao:Shandong University of Science and Technology,2007.
[24] 尹尚先,徐斌,刘德民,等. 我国华北煤田岩溶陷落柱预测研究[J]. 煤炭科学技术,2016,44(1):172-177. YIN Shangxian,XU Bin,LIU Demin,et al. Study on location prediction of paleo-karst sinkholes in northern China coalfields[J]. Coal Science and Technology,2016,44(1):172-177.
[25] 范高锋,王伟胜,刘纯,等. 基于人工神经网络的风电功率预测[J]. 中国电机工程学报,2008,28(34):118-123. FAN Gaofeng,WANG Weisheng,LIU Chun,et al. Wind power prediction based on artificial neural network[J]. Proceedings of The CSEE,2008,28(34):118-123.
[26] 邓卫军. 基于深度学习的计算机图形描述算法研究[J]. 微型电脑应用,2021,37(2):53-55. DENG Weijun. Research on computer graphics description algorithm based on deep learning[J]. Microcomputer Applications,2021,37(2):53-55.
[27] 郑纲. 煤矿底板突水机理与底板突水实时监测技术研究[D]. 西安:长安大学,2004. ZHENG Gang. The floor water bursting mechanism analysis of floor water bursting in coal mines and research on floor water bursting monitoring technique[D]. Xi'an:Chang'an University,2004.
Click below to download English version.
Design and implementation of mine water hazard monitoring and early warning platform.PDF (1672 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons