•  
  •  
 

Coal Geology & Exploration

Abstract

The density of supercritical methane is not only an important parameter for calculation of unconventional natural gas resources and adsorption capacity of methane in coal, but also a main indicator for measurement of the diffusion efficiency of supercritical methane and the ability to dissolve organic matter. Through analysis and comparison of the applicability of various gas state equations, it is realized that the Helmholtz energy state equation can accurately calculate the density of methane under the conditions of 0-30 MPa and 270-360 K. A calculation program for methane density was written using Microsoft Office Excel, and the error was less than 0.05% compared with NIST commercial software. Finally, the changing of methane density was analyzed. In the range of 0-100 MPa and 270-360 K, the density of methane increases with the increase of pressure. The increase rate is greater before 30 MPa and the sensitivity to temperature is strong. Afterwards, the growth rate gradually slows down, while the sensitivity decreases. Under the in-situ condition of the coal seam, with the increase of buried depth, the density increases with temperature and decreases with pressure. Under the combined action of temperature and pressure, the density of methane first increases approximately linearly, and the growth rate gradually decreases. The results provide basic parameters for the occurrence and potential prediction of deep CBM.

Keywords

supercritical methane, methane density, gas state equation, Helmholtz energy, CBM resources

DOI

10.3969/j.issn.1001-1986.2021.01.014

Reference

[1] BANUTI D T. Crossing the widom-line-supercritical pseudo-boiling[J]. The Journal of Supercritical Fluids,2015,98:12-16.

[2] 王艳,徐进良,李文,等. 超临界流体密度波动机理的分子动力学模拟[J]. 科学通报,2020,65(17):1694-1704. WANG Yan,XU Jinliang,LI Wen,et al. Molecular dynamics study of mechanism of density fluctuation in supercritical fluid(in Chinese)[J]. Chinese Science Bulletin,2020,65(17):1694-1704.

[3] 周理,李明,周亚平. 超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J]. 中国科学:B辑,2000,30(1):49-56. ZHOU Li,LI Ming,ZHOU Yaping. Adsorption measurement and theoretical analysis of supercritical methane on high surface activated carbon[J]. Science in China(Series B),2000,30(1):49-56.

[4] 梁洪彬,戚志林,向祖平,等. 超临界页岩气密度特征研究[J]. 油气藏评价与开发,2017,7(5):74-79. LIANG Hongbin,QI Zhilin,XIANG Zuping,et al. Research on the characteristics of the density of supercritical shale gas[J]. Reservoir Evaluation and Development,2017,7(5):74-79.

[5] ANGUS S,ARMSTRONG B,De REUCK K M. International thermodynamic tables of fluid state methane[M]. Oxford:International Union of Pure and Applied Chemistry,1978.

[6] 童景山. 化工热力学[M]. 北京:清华大学出版社,1995. TONG Jingshan. Chemical engineering thermodyna-miss[M]. Beijing:Tsinghua University Press,1995.

[7] 杨兆彪,秦勇,高弟,等. 超临界条件下煤层甲烷视吸附量、真实吸附量的差异及其地质意义[J]. 天然气工业,2011,31(4):13-16. YANG Zhaobiao,QIN Yong,GAO Di,et al. Differences between apparent and true adsorption quantity of coalbed methane under supercritical conditions and their geological significance[J]. Natural Gas Industry,2011,31(4):13-16.

[8] 孙红明,傅雪海,丁永明,等. 煤层气压缩因子解析计算模型的建立[J]. 新疆石油地质,2014,35(2):215-220. SUN Hongming,FU Xuehai,DING Yongming,et al. Analytical calculation model for coalbed methane compressibility factor[J]. Xinjiang Petroleum Geology,2014,35(2):215-220.

[9] 中国国家标准化管理委员会. 煤的高压等温吸附实验方法:GB/T 19560-2004[S]. 北京:中国标准出版社,2008. China National Standardization Management Committee. Experimental method of high-pressure isothermal adsorption to coal:GB/T 19560-2004[S]. Beijing:Standards Press of China,2008.

[10] 时钧,汪家鼎,余国琮,等. 化学工程手册(第二版)上册[M]. 北京:化学工业出版社,1996. SHI Jun,WANG Jiading,YU Guocong,et al. Chemical engineering handbook(2rd Edition)[M]. Beijing:Chemical Industry Press,1996.

[11] ACHTERMANN H J,BOSE T K,ROGENER H,et al. Precise determination of the compressibility factor of methane,nitrogen,and their mixtures from refractive index measurements[J]. International Journal of Thermophysics,1986,7(3):709-720.

[12] KLEINRAHM R,DUSCHEK W,WAGNER W,et al. Measurement and correlation of the(pressure,density,temperature) relation of methane in the temperature range from 273.15 K to 323.15 K at pressures up to 8 MPa[J]. The Journal of Chemical Thermodynamics,1988,20(5):621-631.

[13] PIEPERBECK N,KLEINRAHM R,WAGNER W,et al. Results of(pressure,density,temperature) measurements on methane and on nitrogen in the temperature range from 273.15 K to 323.15 K at pressures up to 12 MPa using a new apparatus for accurate gas-density measurements[J]. The Journal of Chemical Thermodynamics,1991,23(2):175-194.

[14] 熊杰,武雅珍,韩佳昊,等. 基于模糊控制方法的加气站甲烷扩散模型选择[J]. 能源与环保,2019,41(7):57-62. XIONG Jie,WU Yazhen,HAN Jiahao,et al. Selection of methane diffusion model in gas station based on fuzzy control method[J]. China Energy and Environmental Protection,2019,41(7):57-62.

[15] ACHTERMANN H J,HONG Jianguo,WAGNER W,et al. Refractive index and density isotherms for methane from 273 to 373 K and at pressures up to 34 MPa[J]. Journal of Chemical & Engineering Data,1992,37(4):414-418.

[16] SETZMANN U,WAGNER W. A new method for optimizing the structure of thermodynamic correlation equations[J]. International Journal of Thermophysics,1989,10(6):1103-1126.

[17] WAGNER W,SPAN R. Special equations of state for methane,argon,and nitrogen for the temperature range from 270 to 350 K at pressures up to 30 MPa[J]. International Journal of Thermophysics,1993,14(4):699-725.

[18] SETZMANN U,WAGNER W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa[J]. Journal of Physical & Chemical Reference Data,1991,20(6):1061-1155.

[19] 柳辉. 解非线性方程的牛顿迭代法及其应用[J]. 重庆工学院学报(自然科学版),2007,21(8):95-98. LIU Hui. Newton iteration method for nonlinear equation solutions and its application[J]. Journal of Chongqing Institute of Technology(Natural Science Edition),2007,21(8):95-98.

[20] 杜茂康,周玉敏,等. Excel与数据处理[M]. 北京:电子工业出版社,2009.DU Maokang,ZHOU Yumin,CAO Huiying,et al. Excel and data processing[M]. Beijing:Publishing House of Electronics Industry,2009.

[21] 胡圣标,何丽娟,汪集旸. 中国大陆地区大地热流数据汇编(第三版)[J]. 地球物理学报,2001,44(5):611-626. HU Shengbiao,HE Lijuan,WANG Jiyang. Compilation of heat flow data in the China continental area(3rd Edition)[J]. Chinese Journal of Geophysics,2001,44(5):611-626.

[22] 王钧,黄尚瑶,黄歌山,等. 中国地温分布的基本特征[M]. 北京:地震出版社,1990. WANG Jun,HUANG Shangyao,HUANG Geshan,et al. The basic characteristics of China's geothermal distribution[M]. Beijing:Seismological Press,1990.

[23] 张鹏,王良书,刘绍文,等. 南华北盆地群地温场研究[J]. 地球物理学进展,2007,22(2):604-608. ZHANG Peng,WANG Liangshu,LIU Shaowen,et al. Geothermal field in the south Huabei basins[J]. Progress in Geophysics,2007,22(2):604-608.

[24] 钟玲文. 中国煤储层压力特征[J]. 天然气工业,2003,23(5):132-134. ZHONG Lingwen. Pressure characteristics of coal reservoirs in China[J]. Natural Gas Industry,2003,23(5):132-134.

[25] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48-54. QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48-54.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.