Coal Geology & Exploration
Abstract
Aiming at the problems of uncontrollable trajectory, shallow borehole depth and poor gas extraction effect in gas treatment drilling of broken soft coal seam in Qinglong coal mine, the regional progressive gas extraction technology in broken soft coal seam based on compressed-air directional drilling was proposed, on the basis of analyzing the technical bottleneck of existing gas extraction borehole with rotary drilling. The principle and advantage of the technology was expounded, the technology of directional drilling by compressed-air, the technology of long distance in-seam drilling, and the technology of compound slag discharge by double power were integrated. The field test was carried out in roadway 21606 of Qinglong coal mine, 253 boreholes were drilled in the broken soft coal seam with a protodyaknove's number of 0.37.95% of the boreholes, reached the design depth, and the cumulative footage was more than 30 000 m. The single-hole gas extraction purity is 10 times of that of the ordinary rotary boreholes, and the single-hole gas extraction concentration increased by about 50%. The application test shows that the regional progressive gas extraction technology has the advantages of great hole depth, high drilling efficiency and no blind extraction zone, which can effectively relieve the tension situation of mining replacement, improve the level of mine gas treatment technology, and provide a new technical way for the gas treatment of broken soft coal seam.
Keywords
broken soft seam, gas extraction, region progressive, compressed-air directional drilling, composite slag discharge
DOI
10.3969/j.issn.1001-1986.2020.06.006
Recommended Citation
Z.
(2020)
"Analysis of channel imaging effect of high density and conventional observation system,"
Coal Geology & Exploration: Vol. 48:
Iss.
6, Article 7.
DOI: 10.3969/j.issn.1001-1986.2020.06.006
Available at:
https://cge.researchcommons.org/journal/vol48/iss6/7
Reference
[1] 虎维岳,田干. 我国煤矿水害类型及其防治对策[J]. 煤炭科学技术,2010,38(1):92-96. HU Weiyue,TIAN Gan. Mine water disaster type and prevention and control countermeasures in China[J]. Coal Science and Technology,2010,38(1):92-96.
[2] 武强,陈奇. 矿山环境问题诱发的环境效应研究[J]. 水文地质工程地质,2008(5):81-85. WU Qiang,CHEN Qi. An analysis of environmental effects induced by environmental problems in mines[J]. Hydrogeology and Engineering Geology,2008(5):81-85.
[3] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795-805. WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795-805.
[4] 马培智. 华北型煤田下组煤带压开采突水判别模型与防治水对策[J]. 煤炭学报,2005,30(5):608-612. MA Peizhi. Criterion models of mining under high pressure and groundwater controlling countermeasures for lower group coal of Northern China type coal field[J]. Journal of China Coal Society,2005,30(5):608-612.
[5] 武强,赵苏启,孙文洁,等. 中国煤矿水文地质类型划分与特征分析[J]. 煤炭学报,2013,38(6):901-905. WU Qiang,ZHAO Suqi,SUN Wenjie,et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China[J]. Journal of China Coal Society,2013,38(6):901-905.
[6] 武强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561-565. WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561-565.
[7] 董书宁. 煤矿安全高效生产地质保障技术现状与展望[J]. 煤炭科学技术,2007,35(3):1-5. DONG Shuning. Current situation and prospect of coal mine geological guarantee technologies imto prove safety and efficiency[J]. Coal Science and Technology,2007,35(3):1-5.
[8] 杨仁超,王秀平,樊爱萍,等. 苏里格气田东二区砂岩成岩作用与致密储层成因[J]. 沉积学报,2012,30(1):111-119. YANG Renchao,WANG Xiuping,FAN Aiping,et al. Diagenesis of sandstone and genesis of compact reservoirs in the East Ⅱ part of Sulige Gas Field,Ordos Basin[J]. Acta Sedimentologica Sinica,2012,30(1):111-119.
[9] 李易隆,贾爱林,何东博. 致密砂岩有效储层形成的控制因素[J]. 石油学报,2013,34(1):71-82. LI Yilong,JIA Ailin,HE Dongbo. Control factors on the formation of effective reservoirs in tight sands:Examples from Guang'an and Sulige gasfields[J]. Acta Petrolei Sinica,2013,34(1):71-82.
[10] 郝杰,吴鑫,孙明,等. 南堡地区浅层河道砂体的识别[J]. 石油地球物理勘探,2018,53(增刊1):151-157. HAO Jie,WU Xin,SUN Ming,et al. Shallow channel sand identification in Nanpu Area[J]. Oil Geophysical Prospecting,2018,53(Sup.1):151-157.
[11] 胡慧婷,刘铁,李洪霞,等. 分流河道砂体地球物理刻画方法研究:以G油田扶余油层为例[J]. 地球物理学进展,2016,31(6):2541-2546. HU Huiting,LIU Tie,LI Hongxia,et al. Study of geophysical methods to characterize distributary channel sandbody:An example from the Fuyu layer in the G oil field[J]. Progress in Geophysics,2016,31(6):2541-2546.
[12] 曹卿荣,李珮,仝敏波,等. 基于地震正演和属性分析技术预测河道砂体[J]. 西南石油大学学报(自然科学版),2013,35(4):69-74. CAO Qingrong,LI Pei,TONG Minbo,et al. Channel sand distribution prediction based on seismic forward modeling and attribute analysis technology[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2013,35(4):69-74.
[13] 杨春生. 基于地震沉积学的窄小型河道砂体精细刻画[J]. 长江大学学报(自然科学版),2019,16(6):13-18. YANG Chunsheng. The meticulous depiction of narrow channel sandbody based on seismic sedimentology[J]. Journal of Yangtze University(Natural Science Edition),2019,16(6):13-18.
[14] 彭苏萍. 深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J]. 煤,2008,17(2):1-11. PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal,2008,17(2):1-11.
[15] 刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19-25. LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19-25.
[16] 安鹏,于志龙,党虎强,等. 地震属性技术在湖底河道砂体刻画中的应用[J]. 石油地球物理勘探,2017,52(增刊2):194-199. AN Peng,YU Zhilong,DANG Huqiang. Channel sand body description with seismic attributes[J]. Oil Geophysical Prospecting,2017,52(Sup.2):194-199.
[17] 王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J]. 煤田地质与勘探,2018,46(增刊1):41-45. WANG Qi. Application of all digital high density 3D seismic exploration technology in Huaibei mining area[J]. Coal Geology and Exploration,2018,46(Sup.1):41-45.
[18] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332-2336. ZHAO Liming,CUI Ruofei. Application of digital high-density seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332-2336.
[19] 金丹,程建远,张宪旭,等. 高密度全数字检波器地震资料处理的关键技术研究[J]. 中国煤炭地质,2015,27(3):64-69. JIN Dan,CHENG Jianyuan,ZHANG Xianxu,et al. Studies on high density digital geophone seismic data processing key technologies[J]. Coal Geology of China,2015,27(3):64-69.
[20] 尚新民,芮拥军,石林光,等. 胜利油田高密度地震探索与实践[J]. 地球物理学进展,2018,33(4):1545-1553. SHANG Xinmin,RUI Yongjun,SHI Linguang,et al. Exploration and practice of high-density seismic survey in Shengli Oilfield[J]. Progress in Geophysics,2018,33(4):1545-1553.
[21] 郎玉泉,陈同俊,马丽,等. 煤层顶板砂岩富水性AVO预测技术[J]. 煤田地质与勘探,2018,46(3):127-132. LANG Yuquan,CHEN Tongjun,MA Li,et al. Water content prediction of roof sandstone using AVO technology[J]. Coal Geology & Exploration,2018,46(3):127-132.
[22] 李明生,李雅楠,董文波. 辽河青龙台地区高密度全数字三维地震采集技术及效果[J]. 中国石油勘探,2017,22(1):106-112. LI Mingsheng,LI Yanan,DONG Wenbo. High-density digital 3D seismic acquisition technology and its application results in Qinglongtai area,Liaohe Oilfield[J]. China Petroleum Exploration,2017,22(1):106-112.
Click below to download English version.
Analysis of channel imaging effect of high density and conventional observation system.PDF (8082 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons