•  
  •  
 

Coal Geology & Exploration

Abstract

Wide-band, high-power and short-residual acoustic wave sources are the key technology for high-resolution detection of large-scale complex structures, in order to solve the contradiction between detection distance and resolution, a new acoustic wave detection instrument is developed by using the acoustic transmitter made of giant magnetostrictive material(GMM) as the source. The focal center frequency is 5 kHz, and the excitation voltage is 300-600 V, it has the characteristics of large radiated sound power, short residual vibration(3.5 cycles) and frequency band width(1-3 kHz), which solves the problem of the high resolution acoustic wave detection. Its greatest advantage is that the acoustic signal generated each time has good consistency, and can be excited by single point and multiple times. The signal-to-noise ratio can be improved by multiple superposition data processing technology. The problem of high-resolution acoustic detection of M-scale structure body has solved the contradiction between acoustic detection distance and resolution, and has been successfully applied to the detection of top coal thickness in coal mine stope. The field survey results show that the high power acoustic wave detection system can reliably extract 4-7 m of reflected wave signals at the interface of deep coal and rock; The wavelet analysis results show that with the help of wavelet multi-resolution analysis to enhance resolution, the accuracy and reliability of top coal thickness detection in stope are improved, it provides an effective way for accurate detection of top coal thickness.

Keywords

giant magnetostrictive material, acoustic wave, wavelet analysis, coal thickness, detection

DOI

10.3969/j.issn.1001-1986.2020.06.028

Reference

[1] 王贵玲,刘志明,蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报,2004,78(1):44-51. WANG Guiling,LIU Zhiming,LIN Wenjing. Tectonic control of geothermal resources in the peripheral of Ordos basin[J]. Acta Geologica Sinica,2004,78(1):44-51.

[2] REATH K A,RAMSEY M S. Exploration of geothermal systems using hyperspectral thermal infrared remote sensing[J]. Journal of Volcanology and Geothermal Research,2013,265(Sup.1):27-38.

[3] 汪名鹏,韩光海,顾萍. 洪泽县老子山地热矿区地热资源赋存特征[J]. 煤田地质与勘探,2009,37(2):47-50. WANG Mingpeng,HAN Guanghai,GU Ping. Geological features of geothermal resource in Laozi Mountain area of Hongze County[J]. Coal Geology & Exploration,2009,37(2):47-50.

[4] 赵西蓉. 渭河断陷盆地地热资源赋存特征与热储分析[J]. 煤田地质与勘探,2006,44(2):51-54. ZHAO Xirong. Occurrence features of geothermal resources and geothermal bearing analysis in Weihe basin[J]. Coal Geology & Exploration,2006,44(2):51-54.

[5] 朱梅湘,徐勇. 西藏羊八井地热田水热蚀变[J]. 地质科学, 1989(2):162-175. ZHU Meixiang,XU Yong. Hydrothermal alteration in the Yangbajing geothermal field,Tibet[J]. Scientia Geologica Sinica,1989(2):162-175.

[6] 孟璐. 遥感数字图像处理技术在地热资源预测中的应用研究[D]. 长春:东北师范大学,2014. MENG Lu. The applied research of remote sensing digital image processing technology in the geothermal forecasting[D]. Changchun:Northeast Normal University,2014.

[7] 张中言. 西藏羊八井地区遥感数据地温反演与地热异常探[D]. 成都:成都理工大学,2010. ZHANG Zhongyan. Temperature inversion of remote sensing date zone and investigation of geothermal anomaly in Yangbajing region of Tibet[D]. Chengdu:Chengdu University of Technology,2010.

[8] 祖国全,祖晅,何高清. 地热能是影响地球年均气温的重要因素[J]. 世界地质,2015,34(2):565-570. ZU Guoquan,ZU Xuan,HE Gaoqing. Geothermal energy is an important factor affecting Earth's average annual temperature[J]. Global Geology,2015,34(2):565-570.

[9] 王润生,熊盛青,聂洪峰,等. 遥感地质勘查技术与应用研究[J]. 地质学报,2011,85(11):1699-1743. WANG Runsheng,XIONG Shengqing,NIE Hongfeng,et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica,2011,85(11):1699-1743.

[10] 葛碧如,郑新江. 热红外遥感鄂尔多斯高原隐伏地质构造[J]. 地球物理学进展,1996,11(2):16-34. GE Biru,ZHENG Xinjiang. Thermal infrared remote sensing hidden structures of Eerduosi Plateau[J]. Progress in Geophysics,1996,11(2):16-34.

[11] 戴文晗. 西安地区隐伏构造-热红外场遥感信息及三维建模与应用[J]. 遥感信息,2005(1):40-43. DAI Wenhan. Remote sensing information characteristics of the hiding structure and thermal infrared field 3D application in Xi'an Area[J]. Remote Sensing Information,2005(1):40-43.

[12] 郭卫英,张家勇,高丽. 阿尔金断裂的NOAA卫星红外辐射特征[J]. 大地测量与地球动力学,2008,28(3):36-40. GUO Weiying,ZHANG Jiayong,GAO Li. Characteristics of thermal infrared radiation along Altyn Fault by NOAA Satellite[J]. Journal of Geodesy and Geodynamics,2008,28(3):36-40.

[13] 马瑾,汪一鹏,陈顺云,等. 卫星热红外信息与断层活动关系讨论[J]. 自然科学进展,2005,15(12):1467-1475. MA Jin,WANG Yipeng,CHEN Shunyun,et al. Discussion on the relationship between satellite thermal infrared information and fault activity[J]. Advances in Natural Science,2005,15(12):1467-1475.

[14] 张玉君,杨建民,陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用:地质依据和波谱前提[J]. 国土资源遥感,2002(4):30-36. ZHANG Yujun,YANG Jianmin,CHEN Wei. A study of the method for extraction of alteration anomalies from the ETM+(TM) data and its application:Geologic basis and spectral precondition[J]. Remote Sensing for Land and Resources,2002(4):30-36.

[15] 李淼淼,邢立新,潘军,等. 组合分析蚀变信息提取方法研究[J]. 遥感技术与应用,2011,26(3):303-308. LI Miaomiao,XING Lixin,PAN Jun,et al. Research of combinatory analysis method in altered information extraction[J]. Remote Sensing Technology and Application,2011,26(3):303-308.

[16] MENGISTU D Y,TESFAW H B,ATNAFU M A,et al. Detection of geothermal anomalies using Landsat 8 TIRS data in Tulu Moye geothermal prospect,Main Ethiopian Rift[J]. International Journal of Applied Earth Observation and Geoinformation,2019,74:16-26.

[17] DRÜPPEL K,STOBER I,GRIMMER J C,et al. Experimental alteration of granitic rocks:Implications for the evolution of geothermal brines in the Upper Rhine Graben,Germany[J]. Geothermics,2020,88:101903.

[18] 智能永兆. 安康人终于有自己的温泉啦!就在汉阴![EB/OL].[2018-02-03] [2020-10-14]. https://www.sohu.com/a/220706511_99899262. ZHINENG Yongzhao. Ankang people finally have their own hot springs! It's in Hanyin![EB/OL].[2018-02-03] [2020-10-14]. https://www.sohu.com/a/220706511_99899262.

[19] 品三国,游勉县. "陕南第一汤"-勉县即将建成西北第一温泉文化旅游度假区[EB/OL].[2019-08-26].[2020-10-14] https://www.sohu.com/a/336549047_99917878. Pinsanguo,Youmianxian. "The First Hot Spring in Southern Shaanxi"-Mian County is about to build the first hot spring cultural tourism resort in Northwest China[EB/OL].[2019-08-26] [2020-10-14]. https://www.sohu.com/a/336549047_99917878.

[20] 徐通. 秦岭南缘勉略构造带康县-略阳地区组成特征及构造演化研究[D]. 西安:长安大学,2016. XU Tong. Component features and tectonic evolution of Mianlue tectonic zone in Kangxian-Lueyang area,south margin of Qinling Orogen[D]. Xi'an:Chang'an University,2016.

[21] 甘家思,刘锁旺,李愿军. 南秦岭安康月河拉分盆地的构造发育特征[J]. 大地测量与地球动力学,2002,22(4):101-105. GAN Jiasi,LIU Suowang,LI Yuanjun. Tectonic developing characteristics of Yuehe pull-apart basin in south Qinling Area[J]. Journal of Geodesy and Geodynamics,2002,22(4):101-105.

[22] 陕西省地质矿产局. 陕西省区域地质志[M]. 北京:地质出版社,1989. Bureau of Geology and Mineral Resources of Shaanxi Province. Regional geology of Shaanxi Province[M]. Beijing:Geological Publishing House,1989.

[23] 胡圣标,郝杰,付明希,等. 秦岭-大别-苏鲁造山带白垩纪以来的抬升冷却史:低温年代学数据约束[J]. 岩石学报,2005,21(4):1167-1173. HU Shengbiao,HAO Jie,FU Mingxi,et al. Cenozoic denudation and cooling history of Qinling-Dabie-Sulu orogens:Apatite fission track thermochronology constraints[J]. Acta Petrologica Sinica,2005,21(4):1167-1173.

[24] 唐永忠,杨兴科,张宝荣,等. 南秦岭造山带安康石梯-旬阳神河早古生代热水沉积盆地构造-沉积相与热水聚矿特征[J]. 中国地质,2012,39(5):1261-1270. TANG Yongzhong,YANG Xingke,ZHANG Baorong,et al. Structure-sedimentary facies and hydrothermal mineralization characteristics of Shiti(in Ankang)-Shenhe(in Xunyang) Early Paleozoic hydrothermal basin in South Qinling orogenic belt[J]. Geology in China,2012,39(5):1261-1270.

[25] 祝佳. Landsat8卫星遥感数据预处理方法[J]. 国土资源遥感,2016,28(2):21-27. ZHU Jia. Analysis of Landsat8 satellite remote sensing data preprocessing[J]. Remote Sensing for Land and Resources,2016,28(2):21-27.

[26] 郝建亭,杨武年,李玉霞,等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息,2008(1):78-81. HAO Jianting,YANG Wunian,LI Yuxia,et al. Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information,2008(1):78-81.

[27] 覃志豪,张明华,KARNIELI A,等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,56(4):456-466. QIN Zhihao,ZHANG Minghua,KARNIELI A,et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica,2001,56(4):456-466.

[28] 孟鹏,胡勇,巩彩兰,等. 热红外遥感地表温度反演研究现状与发展趋势[J]. 遥感信息,2012,27(6):118-123. MENG Peng,HU Yong,GONG Cailan,et al. Thermal infrared remote sensing of surface temperature inversion:Current status and future prospects[J]. Remote Sensing Information,2012,27(6):118-123.

[29] WAN Zhengming,LI Zhaoliang. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.

[30] 朱贞榕, 程朋根, 桂新,等. 地表温度反演的算法综述[J]. 测绘与空间地理信息,2016,39(5):70-75. ZHU Zhenrong,CHENG Penggen,GUI Xin,et al. Overview of surface temperature inversion algorithm[J]. Geomatics & Spatial Information Technology,2016,39(5):70-75.

[31] 赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003. ZHAO Yingshi. Principles and methods of remote sensing application analysis[M]. Beijing:Science Press,2003.

[32] 覃志豪,高懋芳,秦晓敏,等. 农业旱灾监测中的地表温度遥感反演方法:以MODIS数据为例[J]. 自然灾害学报,2005,14(4):64-81. QIN Zhihao,GAO Maofang,QIN Xiaomin,et al. Methodology to retrieve land surface temperature from MODIS data for agricultural drought monitoring in china[[J]. Journal of Natural Disasters,2005,14(4):64-81.

[33] BARSI J A,SCHOTT J R,PALLUCONI F D,et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[C]//Conference on Earth Observing Systems X 20050731-0802,San Diego,CA(US),SSAI,NASA/GSFC Code 614.4,Greenbelt MD 20771,2005.

[34] 张玉君,曾朝铭,陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用:方法选择和技术流程[J]. 国土资源遥感,2003(2):44-49. ZHANG Yujun,ZENG Chaoming,CHEN Wei. The methods for extraction of alteration anomalies from the ETM+(TM) data and their application:Method selection and technological flow chart[J]. Remote Sensing for Land & Resources,2003(2):44-49.

[35] 刘李,向雅莉,芦雪. 基于ASTER数据矿化蚀变信息提取的主成分特征向量组合模型研究:以内蒙古红旗山地区为例[J]. 现代地质,2010,24(2):403-408. LIU Li,XIANG Yali,LU Xue. Study on the eigenvector combination model of mineralizing alteration information extraction based on the ASTER data:Taking the area of Hongqi mountain in Inner Mongolia as an example[J]. Geoscience,2010,24(2):403-408.

[36] 卢善龙,沈晓华,邹乐君,等. 用于地表温度场与断裂构造关系分析的分段均值法:以江山-绍兴断裂金衢段为例[J]. 地质学报,2009,83(2):239-246. LU Shanlong,SHEN Xiaohua,ZOU Lejun,et al. Subsection mean method for relation analysis of the land surface temperature field and the fault:A case study of the Jiangshan-Shaoxing Fault between Jinhua and Quzhou of Zhejiang Province[J]. Acta Geologica Sinica,2009,83(2):239-246.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.