Coal Geology & Exploration
Abstract
The development degree of natural fractures is the main factor affecting coalbed methane productivity. In order to accurately obtain the distribution position of the natural fractures in the a coalbed methane field in the southern Qinshui basin, 7 refracturing wells in the area were adopted by surface microseismic vector scanning to monitor the natural fractures. A certain amount of three-component geophones were deployed around the fracturing well to collect microseismic events in the surrounding reservoir during fracturing, and after Semblance superposition, the fracture energy slices at different times in the monitoring area were obtained to explain the natural fractures in the monitoring area. Comparing the single well productivity of the well group showed a good correlation with the monitored natural fractures, revealing that natural fractures are the main controlling factor affecting single well productivity, and at the same time showed that the CBM reservoir has strong heterogeneity and natural fractures were localized. Due to the development characteristics and the relatively small scattered area, conventional 3D seismic prediction methods are difficult to identify effectively. The technology can accurately identify the development of natural fractures in coalbed methane reservoirs, and provide reliable guidance for the adjustment of well placement and measures for layer selection.
Keywords
coalbed methane, natural fracture, fracturing, microseismic vector scanning, monitoring, Qinshui basin
DOI
10.3969/j.issn.1001-1986.2020.06.025
Recommended Citation
FAN Juan, HOU Enke, JIN Dewu,
et al.
(2020)
"Construction and transformation technology of three-dimensional fine model of mine water diversion structure,"
Coal Geology & Exploration: Vol. 48:
Iss.
6, Article 26.
DOI: 10.3969/j.issn.1001-1986.2020.06.025
Available at:
https://cge.researchcommons.org/journal/vol48/iss6/26
Reference
[1] 武强. 煤矿防治水细则解读[M]. 北京:煤炭工业出版社,2018:1-4;73-74. WU Qiang. Interpretation of detailed rules for prevention and control of water in coal mines[M]. Beijing:Coal Industry Press,2018:1-4,73-74.
[2] 张胜强. 我国煤矿事故致因理论及预防对策研究[D]. 杭州:浙江大学,2004:6-7. ZHANG Shengqiang. The study on our country's coal mine accident-causing theory and prevention countermeasures[D]. Hangzhou:Zhejiang University,2004:6-7.
[3] 孙喜民. 煤炭工业高质量发展方略研究与实践[J]. 煤炭工程,2019,51(1):152-156. SUN Ximin. Research and practice of high-quality development strategy of coal industry[J]. Coal Engineering,2019,51(1):152-156.
[4] HOULDING S W. 3D geoscience modeling,computer technique for geological characterization[M]. Berlin:Spring-Verlag,1994:2-50.
[5] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305. WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
[6] 毛善君. "高科技煤矿"信息化建设的战略思考及关键技术[J]. 煤炭学报,2014,39(8):1572-1583. MAO Shanjun. Strategic thinking and key technology of informatization construction of high-tech coal mine[J]. Journal of China Coal Society,2014,39(8):1572-1583.
[7] 吴立新,殷作如,邓智毅,等. 论21世纪的矿山:数字矿山[J]. 煤炭学报,2000,25(4):337-342. WU Lixin,YIN Zuoru,DENG Zhiyi,et al. Research to the mine in the 21st century:Digital mine[J]. Journal of China Coal Society,2000,25(4):337-342.
[8] ANOWAR H M,IBRAHIM E,ABDULHAMEED A S. Cooperative Vehicle positioning with multi-sensor data fusion and vehicular communications[J]. Wireless Networks,2019,25(3):1403-1413.
[9] HECHMI M J,HACEN K,AMINE B. Targets classification based on multi-sensor data fusion and supervised learning for surveillance application[J]. Wtreless Personal Communications,2019,105(1):313-333.
[10] 侯恩科,吴立新,李建民,等. 三维地学模拟与数值模拟的耦合方法研究[J]. 煤炭学报,2002,33(4):388-392. HOU Enke,WU Lixin,LI Jianmin,et al. Study on the coupling method of three-dimensional geoscience simulation and numerical simulation[J]. Journal of China Coal Society,2002,33(4):388-392.
[11] 侯恩科,赵洲. 三维体元拓扑数据模型的改进与实验[J]. 煤田地质与勘探,2006,34(4):13-16. HOU Enke,ZHAO Zhou. Optimization and experimentation for 3D topological data model based on component[J]. Coal Geology & Exploration,2006,34(4):13-16.
[12] 陈建平,吕鹏,吴文,等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘,2007,14(5):54-62. CHEN Jianping,LYU Peng,WU Wen,et al. Prediction of concealed orebody based on 3D visualization technology[J]. Geoscience Frontier,2007,14(5):54-62.
[13] WU Qiang,XU Hua. An effective method for 3D geological modeling with multi-source data integration[J]. Computers and Geosciences,2008,34(3):35-43.
[14] 罗周全,吴亚斌,刘晓明,等. 基于SURPAC的复杂地质体FLAC~(3D)模型生成技术[J]. 岩土力学,2008(5):1334-1338. LUO Zhouquan,WU Yabin,LIU Xiaoming,et al. FLAC3D modeling for complex geologic body based on SURPAC[J]. Rock and Soil Mechanics,2008(5):1334-1338.
[15] 胡斌,张倬元,黄润秋,等. FLAC3D前处理程序的开发及仿真效果检验[J]. 岩石力学与工程学报,2002,21(9):1381-1391. HU Bin,ZHANG Zhuoyuan,HUANG Runqiu,et al. Development of FLAC3D pre-processing program and verificatsion of simulation effect[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1381-1391.
[16] 韩崇昭,朱洪艳,段战胜,等. 多源信息融合(第二版)[M]. 北京:清华大学出版社,2010:1-14. HAN Chongzhao,ZHU Hongyan,DUAN Zhansheng,et al. Multi-source information fusion(second Edition)[M]. Beijing:Tsinghua University Press,2010:1-14.
[17] 武强,徐华. 地质建模与可视化[M]. 北京:科学出版社,2011:1-16. WU Qiang,XU Hua. 3D Geological modeling and virtual visualization[M]. Beijing:Science Press,2011:1-16.
[18] 潘结南,孟召平,甘莉. 矿山三维地质建模与可视化研究[J]. 煤田地质与勘探,2005,33(1):16-18. PAN Jienan,MENG Zhaoping,GAN Li. Study on 3D geoscience modeling and visualization of mines[J]. Coal Geology & Exploration,2005,33(1):16-18.
[19] 科瓦列夫斯基. 基于地质统计学的地质建模[M]. 刘应如,曹正林,郑红军,等译. 北京:石油工业出版社,2014:1-20. KOVALEVSKIY E. Geological modeling on the base of geostatistics[M]. Beijing:Petroleum Industry Press,2014.
[20] 林杭,曹平,李江腾,等. 基于SURPAC的FLAC3D三维模型自动构建[J]. 中国矿业大学学报,2008,37(3):339-342. LIN Hang,CAO Ping,LI Jiangteng,et al. Automatic generation of FLAC3D model based on SURPAC[J]. Journal of China University of Mining & Technology,2008,37(3):339-342.
[21] BASU A,LI X. Computer Vision:Systems,theory and applications[M]. World Scientific,1993.
[22] 万江平,严明. 用Java语言开发专家系统[J]. 计算机应用研究,2000,17(5):62-64. WAN Jiangping,YAN Ming. Develop expert system with Java language[J]. Computer Application Research,2000,17(5):62-64.
[23] 张浩,骆正虎,杨敬安. 基于Java语言的移动Agent开发平台[J]. 合肥工业大学学报(自然科学版),2001,24(5):907-912. ZHANG Hao,LUO Zhenghu,YANG Jing'an. Mobile Agent development platform based on Java language[J]. Journal of Hefei University of Technology(Natural Science Edition),2001,24(5):907-912.
[24] 王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8-15. WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8-15.
[25] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10. WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons