Coal Geology & Exploration
Abstract
Artificial freezing is a commonly used method for stopping water and providing temporary support during the excavation of saturated sand. This study on the damage characteristics of frozen soil lays the foundation for the analysis of the mechanical properties of frozen soil and the stability of frozen bodies. In order to study the damage mechanical properties of frozen sand, three-dimensional laboratory tests on frozen sand with different intermediate principal stress coefficients were carried out at -5℃. Based on the Weibull random distribution of micro element failure of frozen soil, the Drucker-Prager strength criterion was invoked as the statistical distribution variable, and the strain equivalence hypothesis was used to establish the damage constitutive model of frozen sand under three-dimensional stress state. On this basis, the model parameters F0 and m are discussed the damage constitutive model of frozen sand under the influence of medium principal stress coefficient is established by modifying the model parameters reasonably and comparing with the test results. The results show that the parameters F0 and m decrease first and then increase along with the increase of the intermediate principal stress coefficient; the parameter F0 reflects the strength characteristics of frozen sand, and the parameter m represents the ductility and brittleness of frozen sand. The damage constitutive model of frozen sand considering the influence of medium principal stress coefficient can effectively simulate the whole stress-strain curve of frozen sand. The research results provide a theoretical basis for the engineering design of an artificial freezing method.
Keywords
triaxial stress state, intermediate principal stress coefficient, Drucker-Prager criterion, Weibull distribution, damage constitutive model
DOI
10.3969/j.issn.1001-1986.2020.06.016
Recommended Citation
WEI Yingchun, ZHANG Jin, CAO Daiyong,
et al.
(2020)
"Research status and thoughts for coal fines during CBM development,"
Coal Geology & Exploration: Vol. 48:
Iss.
6, Article 17.
DOI: 10.3969/j.issn.1001-1986.2020.06.016
Available at:
https://cge.researchcommons.org/journal/vol48/iss6/17
Reference
[1] 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京:科学出版社,2016. China National Administration of Coal Geology. China occurrence regularity of coal resources and resource evaluation[M]. Beijing:Science Press,2016.
[2] 车长波,杨虎林,李富兵,等. 我国煤层气资源勘探开发前景[J]. 中国矿业,2008(5):1-4. CHE Changbo,YANG Hulin,LI Fubing,et al. Exploration and development prospects of coalbed methane(CBM) resources in China[J]. China Mining Magazine,2008(5):1-4.
[3] 翟光明,何文渊. 中国煤层气赋存特点与勘探方向[J]. 天然气工业,2010,30(11):1-3. ZHAI Guangming,HE Wenyuan. Occurrence features and exploration orientation of coalbed methane gas in China[J]. Natural Gas Industry,2010,30(11):1-3.
[4] 叶建平,秦勇,林大扬. 中国煤层气资源[M]. 徐州:中国矿业大学出版社,1998. YE Jianping,QIN Yong,LIN Dayang. Coalbed methane resources of china[M]. Xuzhou:China University of Mining and Technology Press,1998.
[5] 孙万禄. 中国煤层气盆地[M]. 北京:地质出版社,2005. SUN Wanlu. Coalbed methane basins of china[M]. Beijing:Geological Publishing House,2005.
[6] 王红岩,李景明,刘洪林,等. 煤层气基础理论、聚集规律及开采技术方法进展[J]. 石油勘探与开发,2004,31(6):14-16. WANG Hongyan,LI Jingming,LIU Honglin,et al. Progress of basic theory and accumulation law and development technology of coalbed methane[J]. Petroleum Exploration and Development,2004,31(6):14-16.
[7] 秦车影. 赵庄井田煤层气成藏条件研究[J]. 能源与环保,2020,42(10):92-99. QIN Cheying. Study on CBM reservoiring condition in Zhaozhuang mine field[J]. China Energy and Environmental Protection,2020,42(10):92-99.
[8] 陈振宏,王一兵,孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报,2009,34(2):229-232. CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influences and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229-232.
[9] 李仰民,王立龙,刘国伟,等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气,2010,7(6):39-43. LI Yangmin,WANG Lilong,LIU Guowei,et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J]. China Coalbed Methane,2010,7(6):39-43.
[10] 白建梅,孙玉英,李薇,等. 高煤阶煤层气井煤粉产出对渗透率影响研究[J]. 中国煤层气,2011,8(6):18-21. BAI Jianmei,SUN Yuying,LI Wei,et al. Study of the impact of coal dust yield on permeability rate in high rank CBM well[J]. China Coalbed Methane,2011,8(6):18-21.
[11] 曹代勇,袁远,魏迎春,等. 煤粉的成因机制-产出位置综合分类研究[J]. 中国煤炭地质,2012,24(1):10-12. CAO Daiyong,YUAN Yuan,WEI Yingchun,et al. Comprehensive classification study of coal fines genetic mechanism and origin site[J]. Coal Geology of China,2012,24(1):10-12.
[12] 曹代勇,姚征,李小明,等. 单相流驱替物理模拟实验的煤粉产出规律研究[J]. 煤炭学报,2013,38(4):624-628. CAO Daiyong,YAO Zheng,LI Xiaoming,et al. Rules of coal powder output under physical simulation experiments of single-phase water flow displacement[J]. Journal of China Coal Society,2013,38(4):624-628.
[13] 魏迎春,曹代勇,袁远,等. 韩城区块煤层气井产出煤粉特征及主控因素[J]. 煤炭学报,2013,38(8):1424-1429. WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area[J]. Journal of China Coal Society,2013,38(8):1424-1429.
[14] 张芬娜,綦耀光,徐春成,等. 煤粉对煤层气井产气通道的影响分析[J]. 中国矿业大学学报,2013,42(3):428-435. ZHANG Fenna,QI Yaoguang,XU Chuncheng,et al. Analysis of the impact of gas production channel for coalbed methane well by pulverized coal[J]. Journal of China University of Ming & Technology,2013,42(3):428-435.
[15] 邹雨时,张士诚,张劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890-1894. ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. Damage mechanism of coal powder on fracture conductivity[J]. Journal of China Coal Society,2012,37(11):1890-1894.
[16] 李小明,曹代勇,姚征,等. 基于流态物理模拟试验的煤粉排出机理研究[J]. 煤炭科学技术,2015,43(2):76-79. LI Xiaoming,CAO Daiyong,YAO Zheng,et al. Study on mechanism of pulverized coal discharge based on flow-state physical simulation[J]. Coal Science and Technology,2015,43(2):76-79.
[17] GUO Zhenghuai,HUSSAIN F,CINAR Y. Permeability variation associated with fines production from anthracite coal during water injection[J]. International Journal of Coal Geology,2015,147-148.
[18] GUO Zhenghuai,LE-HUSSAIN F,CINAR Y. Physical and analytical modelling of permeability damage in bituminous coal caused by fines migration during water production[J]. Journal of Natural Gas Science and Engineering,2016,35:331-346.
[19] BAI Tianhang,CHEN Zhongwei,SAIIED M A,et al. Experimental investigation on the impact of coal fines generation and migration on coal permeability[J]. Journal of Petroleum Science and Engineering,2017,159:257-266.
[20] WEI Yingchun,LI Chao,CAO Daiyong,et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering,2019,182:106355.
[21] 刘岩,苏雪峰,张遂安. 煤粉对支撑裂缝导流能力的影响特征及其防控[J]. 煤炭学报,2017,42(3):687-693. LIU Yan,SU Xuefeng,ZHANG Sui'an. Influencing characteristics and control of coal powder to proppant fracture conductivity[J]. Journal of China Coal Society,2017,42(3):687-693.
[22] 胡胜勇,郝勇鑫,陈云波,等. 煤粉运移与沉积对支撑裂缝渗透率动态影响规律[J/OL]. 煤炭学报:1-10. https://doi.org/10.13225/j.cnki.jccs.2020.1306. HU Shengyong,HAO Yongxin,CHEN Yunbo,et al. Dynamic influence law of coal powder migration and deposition on propped fracture permeability[J/OL]. Journal of China Coal Society:1-10. https://doi.org/10.13225/j.cnki.jccs.2020.1306.
[23] 石军太,吴嘉仪,房烨欣,等. 考虑煤粉堵塞影响的煤储层渗透率模型及其应用[J]. 天然气工业,2020,40(6):78-89. SHI Juntai,WU Jiayi,FANG Yexin,et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry,2020,40(6):78-89.
[24] 赵政,倪小明,刘泽东,等. 气/水两相驱替煤粉引起的煤裂缝导流衰减特征实验研究[J/OL]. 煤炭学报:1-12. https://doi.org/10.13225/j.cnki.jccs.2019.1299. ZHAO Zheng,NI Xiaoming,LIU Zedong,et al. Experimental study on the attenuation characteristics of coal fissure induced by gas-water two-phase drive[J/OL]. Journal of China Coal Society:1-12. https://doi.org/10.13225/j.cnki.jccs.2019.1299.
[25] TAO Shu,TANG Dazhen,XU Hao,et al. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity:A case of Baode Block,northeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2017,152:229-237.
[26] 魏迎春,张傲翔,姚征,等. 韩城区块煤层气排采中煤粉产出规律研究[J]. 煤炭科学技术,2014,42(2):85-89. WEI Yingchun,ZHANG Aoxiang,YAO Zheng,et al. Research on output laws of pulverized coal during coal bed methane drainage in Hancheng block[J]. Coal Science and Technology,2014,42(2):85-89.
[27] 魏迎春,李超,曹代勇,等. 煤层气开发中煤粉产出机理及管控措施[J]. 煤田地质与勘探,2018,46(2):68-73. WEI Yingchun,LI Chao,CAO Daiyong,et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration,2018,46(2):68-73.
[28] 张遂安,曹立虎,杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报,2014,39(9):1927-1931. ZHANG Sui'an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927-1931.
[29] 姚征,曹代勇,熊先钺,等. 基于示功图监测的煤粉相关井下故障预警[J]. 煤炭学报,2015,40(7):1595-1600. YAO Zheng,CAO Daiyong,XIONG Xianyue,et al. Forecast of coal fines-related downhole failures based on monitoring dynamometer card[J]. Journal of China Coal Society,2015,40(7):1595-1600.
[30] WEI Yingchun,LI Chao,CAO Daiyong,et al. New progress on the coal fines affecting the development of coalbed methane[J]. Acta Geologica Sinica-English Edition,2018,92(5):2060-2062.
[31] WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics of pulverized coal during coalbed methane drainage in Hancheng block,Shaanxi Province,China[J]. Energy Exploration & Exploitation,2013,31(5):745-757.
[32] ZHAO Xianzheng,LIU Shiqi,SANG Shuxun,et al. Characteristics and generation mechanisms of coal fines in coalbed methane wells in the southern Qinshui Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,34:849-863.
[33] PRANESH V,BALASUBRAMANIAN S,Kumar R S,et al. Kaolinite flakes and coal fines production in lignite core under ambient conditions:A case study of Neyveli lignite field at Cauvery Basin,southern India[J]. Journal of Natural Gas Science and Engineering,2019,64:72-80.
[34] 魏迎春,张傲翔,曹代勇,等. 临汾区块煤层气井排采中产出煤粉特征[J]. 煤田地质与勘探,2016,44(3):30-35. WEI Yingchun,ZHANG Aoxiang,CAO Daiyong,et al. Characteristics of pulverized coal during coalbed methane drainage in Linfen block[J]. Coal Geology & Exploration,2016,44(3):30-35.
[35] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350-359.
[36] 姚征,曹代勇,魏迎春,等. 水岩反应中泥质夹层生成固相微粒的实验研究[J]. 煤炭学报,2019,44(7):2188-2196. YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental research on the generation of solid fines from muddy intercalation in water-rock reaction[J]. Journal of China Coal Society,2019,44(7):2188-2196.
[37] 曹立虎,张遂安,张亚丽,等. 煤层气水平井煤粉产出及运移特征[J]. 煤田地质与勘探,2014,42(3):31-35. CAO Lihu,ZHANG Sui'an,ZHANG Yali,et al. Investigation of coal powder generation and migration characteristics in coalbed methane horizontal well[J]. Coal Geology & Exploration,2014,42(3):31-35.
[38] 白建梅,陈浩,祖世强,等. 煤层气多分支水平井煤粉形成机理初步认识[C]//煤层气勘探开发理论与技术. 北京:石油工业出版社,2010:425-431. BAI Jianmei,CHEN Hao,ZU Shiqiang,et al. CBM multi-branch horizontal wells pulverized coal formation mechanismC]//Coalbed methane exploration and development of theory and technology. Beijing:Petroleum Industry Press,2010:425-431.
[39] 王旱祥,兰文剑. 煤层气井煤粉产生机理探讨[J]. 中国煤炭,2012,38(2):95-97. WANG Hanxiang,LAN Wenjian. Discussion on formation mechanism of coal powder in coalbed methane well[J]. China Coal,2012,38(2):95-97.
[40] 刘升贵,贺小黑,李惠芳. 煤层气水平井煤粉产生机理及控制措施[J]. 辽宁工程技术大学学报(自然科学版),2011,30(4):508-512. LIU Shenggui,HE Xiaohei,LI Huifang. Production mechanism and control measures of coal powder in coalbed methane horizontal well[J]. Journal of Liaoning Technical University (Natural Science),2011,30(4):508-512.
[41] 杨延辉,汤达祯,杨艳磊,等. 煤储层速敏效应对煤粉产出规律及产能的影响[J]. 煤炭科学技术,2015,43(2):96-99. YANG Yanhui,TANG Dazhen,YANG Yanlei,et al. Influence on velocity sensitivity effect of coal reservoir to production law of pulverized coal and gas productivity[J]. Coal Science and Technology,2015,43(2):96-99.
[42] PALMER I D,MOSCHOVIDIS Z A,CAMERON J R. Coal failure and consequences for coalbed methane wells[J]. Society of Petroleum Engineers,2005.
[43] HUANG Fansheng,KANG Yili,YOU Lijun,et al. Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs[J]. Fuel,2018,222:193-206.
[44] 张芬娜,綦耀光,莫日和,等. 单相流煤层气井裂隙煤粉受力分析及启动条件[J]. 煤矿开采,2011,16(6):11-13. ZHAN Fenna,QI Yaoguang,MO Rihe et al. Force analysis of uniflow coaldust in cracks of mine for CBM and starting condition[J]. Coal Mining Technology,2011,16(6):11-13.
[45] 綦耀光,张芬娜,刘冰,等. 煤层气井产气通道内煤粉运动特征分析[J]. 煤炭学报,2013,38(9):1627-1633. QI Yaoguang,ZHANG Fenna,LIU Bing,et al. Calculation on discharge flow of pulverized coal in gas production channel for coalbed methane well[J]. Journal of China Coal Society,2013,38(9):1627-1633.
[46] 陈文文,王生维,秦义,等. 煤层气井煤粉的运移与控制[J]. 煤炭学报,2014,39(增刊2):416-421. CHEN Wenwen,WANG Shengwei,QIN Yi,et al. Migration and control of coal powder in CBM well[J]. Journal of China Coal Society,2014,39(Sup.2):416-421.
[47] 刘升贵,张新亮,袁文峰,等. 煤层气井煤粉产出规律及排采管控实践[J]. 煤炭学报,2012,37(增刊2):412-415. LIU Shenggui,ZHANG Xinliang,YUAN Wenfeng,et al. Regularity of coal powder production and concentration control method during CBM well drainage[J]. Journal of China Coal Society,2012,37(Sup.2):412-415.
[48] 张公社,田文涛,陶杉,等. 煤层气储层煤粉运移规律试验研究[J]. 石油天然气学报,2011,33(9):105-108+168. ZHANG Gongshe,TIAN Wentao,TAO Shan,et al. Experimental research of coal grain migration rules of coalbed methane[J]. Journal of Oil and Gas Technology,2011,33(9):105-108.
[49] ZHANG Aoxiang,CAO Daiyong,WEI Yingchun,et al. Characterization of fines produced during drainage of coalbed methane reservoirs in the Linfen Block,Ordos Basin[J]. Energy Exploration & Exploitation,2020,38(5):1664-1679.
[50] 曹立虎,张遂安,石惠宁,等. 沁水盆地煤层气水平井井筒煤粉迁移及控制[J]. 石油钻采工艺,2012,34(4):93-95. CAO Lihu,ZHANG Sui'an,SHI Huining,et al. Coal dust migration and treatment for coalbed methane horizontal wells in Qinshui Basin[J]. Oil Drilling & Production Technology,2012,34(4):93-95.
[51] HUANG Fansheng,KANG Yili,YOU Zhenjiang,et al. Critical conditions for massive fines detachment induced by single-phase flow in coalbed methane reservoirs:Modeling and experiments[J]. Energy & Fuels,2017,31:6782-6793.
[52] 刘新福,刘春花,吴建军,等. 煤储层排采液流携粉运移模型与产出规律[J]. 煤炭学报,2018,43(3):770-775. LIU Xinfu,LIU Chunhua,WU Jianjun,et al. Migration models of pulverized coal flowing with fluid and its production in CBM channels for the coal reservoirs[J]. Journal of China Coal Society,2018,43(3):770-775.
[53] GAO Dapeng,LIU Yuewu,WANG Tianjiao,et al. Experimental investigation of the impact of coal fines migration on coal core water flooding[J]. Sustainability,2018,10(11),4102.
[54] GUO Zhenghuai,Phung N H V,HUSSAIN F. A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow[J]. International Journal of Coal Geology,2018,200:61-76.
[55] HAN Wenlong,WANG Yanbin,FAN Jingjing,et al. An experimental study on coal fines migration during single phase water flow[J]. Geofluids,2020,2020.
[56] 皇凡生,康毅力,李相臣,等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947-954. HUANG Fansheng,KANG Yili,LI Xiangchen,et al. Incipient motion mechanisms and control measures of coal fines during single phase water flow in coalbed fractures[J]. Acta Petrolei Sinica,2017,38(8):947-954.
[57] 慕甜,马东民,陈跃,等. 煤层气井多相流条件下不同粒径煤粉启动-运移规律[J]. 煤炭科学技术,2020,48(5):188-196. MU Tian,MA Dongmin,CHEN Yue,et al. Start-migration law of coal powder with different particle sizes under multi-phase flow conditions in coalbed methane wells[J]. Coal Science and Technology,2020,48(5):188-196.
[58] 魏迎春,崔茂林,张劲,等. 煤层气开发中不同粒度煤粉的聚集沉降实验[J]. 煤田地质与勘探,2020,48(5):1-9. WEI Yingchun,CUI Maolin,ZHANG Jin,et al. Aggregation and sedimentation experiments of coal fines with different particle sizes during CBM development[J]. Coal Geology & Exploration,2020,48(5):1-9.
[59] 杜军军,刘联涛,崔金榜,等. 煤层气井不同类型煤粉的静态沉降规律[J]. 煤炭学报,2018,43(增刊1):203-209. DU Junjun,LIU Liantao,CUI Jinbang,et al. Static settlement of different types of pulverized coal in CBM wells[J]. Journal of China Coal Society,2018,43(Sup.1):203-209.
[60] CHEQUER L,VAZ A,BEDRIKOVETSKY P. Injectivity decline during low-salinity waterflooding due to fines migration[J]. Journal of Petroleum Science and Engineering,2018,165:1054-1072.
[61] ZHONG Ziyao,WU Xiaodong,HAN Guoqing,et al. Experimental investigation on particle transport of coal fines in unsteady terrain slug flow[J]. Journal of Petroleum Science and Engineering,2018:747-758.
[62] 陈跃,汤达祯,许浩,等. 基于测井信息的韩城地区煤体结构的分布规律[J]. 煤炭学报,2013,38(8):1435-1442. CHEN Yue,TANG Dazhen,XU Hao,et al. The distribution of coal structure in Hancheng based on well logging data[J]. Journal of China Coal Society,2013,38(8):1435-1442.
[63] 张晓玉,王安民,张傲翔,等. 韩城区块构造煤类型及其产出煤粉特征分析[J]. 中国煤炭地质,2014,26(8):91-94. ZHANG Xiaoyu,WANG Anmin,ZHANG Aoxiang,et al. Tectonoclastic coal types and characteristic analysis of coal fines in Hancheng block[J]. Coal Geology of China,2014,26(8):91-94.
[64] 王丹,赵峰华,宋波,等. 分散剂影响煤粉采出效果的实验研究[J]. 煤炭学报,2015,40(1):149-153. WANG Dan,ZHAO Fenghua,SONG Bo,et al. Experimental study of coal powder production affected by using dispersant[J]. Journal of China Coal Society,2015,40(1):149-153.
[65] 杨宇,曹煜,田慧君,等. 压裂中煤粉对煤储层损害机理分析与防控对策[J]. 煤炭科学技术,2015,43(02):84-87. YANG Yu,CAO Yu,TIAN Huijung,et al. Mechanism anlaysis of coal fines damaged to coal reservoirs and prevention countermeasures during fracturing[J]. Coal Science and Technology,2015,43(02):84-87.
[66] 罗莉涛,刘卫东,朱文卿,等. 港西三区聚表二元驱中表面活性剂优化筛选[J]. 科学技术与工程,2015,15(20):238-243. LUO Litao,LIU Weidong,ZHU Wenqing,et al. Research on optimization selection method of surfactant of polymer surfactant binary flooding for the west areas reservoir in dagang oilfield[J]. Science Technology and Engineering,2015,15(20):238-243.
[67] 刘通义,兰昌文,彭建,等. 煤层压裂用悬浮分散剂BC-11的研究[J]. 应用化工,2015,44(4):670-672. LIU Tongyi,LAN Changwen,PENG Jian,et al. Study on suspension dispersion agents BC-11 used in coal-bed fracturing[J]. Applied Chemical Industry,2015:44(4):670-672.
[68] 魏迎春,李超,曹代勇,等. 煤层气洗井中不同粒径煤粉的分散剂优选实验[J]. 煤炭学报,2017,42(11):2908-2913. WEI Yingchun,LI Chao,CAO Daiyong,et al. Experiment on screening dispersants of pulverized coal with different sizes in CBM well-washing technology[J]. Journal of China Coal Society,2017,42(11):2908-2913.
[69] 宋金星,刘程瑞. 基于改性表面活性剂的煤储层表面物理改性增产机理分析[J]. 煤矿安全,2020,51(06):202-206. SONG Jinxing,LIU Chengrui. Mechanism analysis of physical modification and increasing production of coal reservoir surface based on modified surfactant[J]. Safety in Coal Mines,2020,51(6):202-206.
[70] 魏迎春,李超,曹代勇,等. 煤层气洗井中煤粉分散剂对煤岩的影响[J]. 煤炭学报,2018,43(7):1951-1958. WEI Yingchun,LI Chao,CAO Daiyong,et al. Effect of pulverized coal dispersant on coal in the CBM well-washing technology[J]. Journal of China Coal Society,2018,43(7):1951-1958.
[71] 李超,魏迎春,崔宝磊. 煤粉分散稳定性的影响因素分析[J]. 煤田地质与勘探,2018,46(1):73-77. LI Chao,WEI Yingchun,CUI Baolei. Analysis on influencing factors of dispersion stability of pulverized coal[J]. Coal Geology & Exploration,2018,46(1):73-77.
[72] 刘子雄,刘汝敏,韩冠楠,等. 煤层气井压裂裂缝内超级分子膜控煤粉可行性研究[J]. 煤炭科学技术,2020,48(5):182-187. LIU Zixiong,LIU Rumin,HAN Guannan,et al. Feasibility study of super molecular film controlled coal powder in fracturing crack of coalbed methane well[J]. Coal Science and Technology,2020,48(5):182-187.
[73] 熊先钺. 韩城区块煤层气连续排采主控因素及控制措施研究[D]. 北京:中国矿业大学(北京),2014. XIONG Xianyue. Research on control factors and measures of continuous coal bed methane drainage in Hancheng Block[D]. Beijing:China University of Mining and Technology(Beijing),2014.
[74] 刘冰,綦耀光,张芬娜,等. 煤层气井射流冲煤粉装置冲击深度的研究[J]. 煤炭学报,2014,39(4):713-718. LIU Bing,QI Yaoguang,ZHANG Fenna,et al. The impinging depth of coal particles cleanout jet device for coalbed methane well[J]. Journal of China Coal Society,2014,39(4):713-718.
[75] 吴庆彬. 射流泵在煤层气排采中的自动控制[J]. 化工自动化及仪表,2014,41(8):943-945. WU Qingbin. Auto-control of jet pumps in CBM production[J]. control and instruments in chemical industry,2014,41(8):943-945.
[76] 李斌,刘欣佳,张潇,等. 煤粉对储层的伤害机理与防治措施研究[J]. 煤炭技术,2020,39(8):115-118. LI Bin,LIU Xinjia,ZHANG Xiao,et al. Study on damage mechanism of coal fines to reservoir stratum and treating measures[J]. Coal Technology,2020,39(8):115-118.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons