•  
  •  
 

Coal Geology & Exploration

Abstract

Ordovician limestone karst water is the main threatening water source for mining activities in Baode coal mine, and it is one of the main water supply sources. Ordovician limestone karst water samples were systematically collected in Baode coal mine, and the methods of correlation analysis, ion proportional coefficient, saturation index inversion simulation and Chlor-Alkali index were chosen to analyze the hydrochemical characteristics and its formation mechanism. The results showed that the water quality types of Ordovician limestone water changed from runoff zone to stagnant zone in a trend of HCO3-Na(Na·Ca)→HCO3·Cl-Na·Ca(Ca·Mg)→Cl-Na(Na·Ca). The mass concentration of each ion was linearly related to TDS value, and positively correlated with TDS except for HCO3-. Cationic alternating adsorption, BSR and solution filtration were the main function to control the hydrogeochemical environment of groundwater in the coal mine. According to the saturation index(SI) calculation and simulation path, it was confirmed that calcite, dolomite and gypsum was dissolved in runoff zone, dolomite precipitation occured in stagnant zone, gypsum was always in unsaturated state and tended to dissolve. This conclusion would provide a basis for the prevention and control of water damage in deep coal mining and the utilization of mine water in Baode coal mine.

Keywords

Ordovician limestone water, hydrogeochemistry, formation mechanism, inverse geochemical modelling, Baode coal mine

DOI

10.3969/j.issn.1001-1986.2020.06.010

Reference

[1] 张晓磊.巨厚岩浆岩下煤层瓦斯赋存特征及其动力灾害防治技术研究[D]. 徐州:中国矿业大学,2015. ZHANG Xiaolei. Research on coal seam occurance and its dynamic disasters prevention and control technologies under an extremely thick magmatic rock[D]. Xuzhou:China University of Mining and Technology,2015.

[2] SHINJINI S,RATAN K. Effect of igneous intrusive on coal microconstituents:Study from an Indian Gondwana coalfield[J]. International Journal of Coal Geology,2011,85(1):161-167.

[3] CHRISTOPHER I U.Seismic recognition of igneous rocks of the deepwater Taranaki Basin,New Zealand,and their distribution[J].New Zealand Journal of Geology and Geophysics,2020,63(2):190-209.

[4] 吴海波,董守华,黄亚平,等. 煤层火成岩侵入的反射波特征研究与应用[J]. 地球物理学进展,2014,29(6):2779-2784. WU Haibo,DONG Shouhua,HUANG Yaping,et al.Characteristics study and application of coal seam igneous intrusion zones reflected waves[J].Progress in Geophysics,2014,29(6):2779-2784.

[5] 孙学凯,崔若飞.地震相分析在探测煤层中火成岩侵入范围的应用[J]. 煤田地质与勘探,2010,38(5):58-60. SUN Xuekai,CUI Ruofei. Application of seismic faces analysis in detecting the magmatic intrusion zones[J].Coal Geology & Exploration,2010,38(5):58-60.

[6] 吴海波,董守华,黄亚平,等.基于地震属性的煤层火成岩侵入预测[J]. 地球物理学进展,2015,30(3):1376-1381. WU Haibo,DONG Shouhua,HUANG Yaping,et al.Prediction of coal seam igneous intrusion based on seismic attributes[J].Progress in Geophysics,2015,30(3):1376-1381.

[7] 戴方尧,崔若飞,陈同俊. 多参数岩性反演在煤田地震勘探中的应用[J]. 物探与化探,2013,37(1):104-107. DAI Fangyao,CUI Ruofei,CHEN Tongjun.The application of multiple parameters lithological inversion to coalfield seismic exploration[J]. Geophysical and Geochemical Exploration,2013,37(1):104-107.

[8] 刘鹏.岩性柱状数据重构拟密度反演预测煤层岩浆岩分布:以祁南煤矿103采区为例[J]. 工程地球物理学报,2019,16(4):500-507. LIU Peng.Prediction of magmatic intrusion by using quasi-density inversion technique based on lithological columnar data reconstruction:Taking mining area 103 of Qinan Coal mine as an example[J].Chinese Journal of Engineering Geophysics,2019,16(4):500-507.

[9] 李江,智敏,朱书阶. 岩浆岩地震波阻抗反演与厚度预测[J].物探与化探,2020,44(5):1233-1238. LI Jiang,ZHI Min,ZHU Shujie.The fictitious P-impedance inversion and thickness prediction of magmatic rock[J].Geophysical and Geochemical Exploration,2020,44(5):1233-1238.

[10] 崔大尉,于景邨,戴方尧. 岩浆岩侵入煤层范围的地震解释方法[J]. 煤田地质与勘探,2014,42(2):76-79. CUI Dawei,YU Jingcun,DAI Fangyao.Seismic interpretation method for the magmatic intrusion extent in coal seams[J].Coal Geology & Exploration,2014,42(2):76-79.

[11] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332-2336. ZHAO Liming,CUI Ruofei. Application of digital high-destiy seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332-2336.

[12] 赵立明. 淮北矿区高密度三维地震勘探岩性解释技术研究[D].徐州:中国矿业大学,2015. ZHAO Liming.Study on lithology interpretation technology of high-density 3D seismic data in huaibei mining area[D]. Xu zhou:China University of Mining and Technology,2015.

[13] 王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J].煤田地质与勘探,2018,46(增刊1):41-45. WANG Qi.Application of all digital high density 3D seismic exploration technology in Huaibei mining area[J].Coal Geology & Exploration,2018,46(Sup.1):41-45.

[14] 牛跟彦. 全数字高密度三维地震勘探技术在煤矿采区的研究与应用[J]. 煤炭技术,2019,38(10):58-60. NIU Genyan.Application and research of all digital high density 3D seismic exploration technology in coalmine winning district[J].Coal Technology,2019,38(10):58-60.

[15] 王树威.全数字高密度三维地震勘探中地震属性预测煤层厚度的应用[J]. 能源与环保,2019,41(6):51-56. WANG Shuwei.Application on seismic attributes forecasting coal thickness of all digital high density 3D seismic exploration[J]. China Energy and Environmental Protection,2019,41(6):51-56.

[16] 韩文功,于静,刘学伟. 高密度三维地震勘探技术[M]. 北京:地质出版社,2017. HAN Wengong,YU Jing,LIU Xuewei. High-density 3D Seismic exploration technology[M]. Beijing:Geological Publishing House,2017.

[17] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.

[18] 宁宏晓,唐东磊,皮红梅,等. 国内陆上"两宽一高"地震勘探技术及发展[J]. 石油物探,2019,58(5):645-653. NING Hongxiao,TANG Donglei,PI Hongmei,et al. The technology and development of "WBH" seismic exploration in land,China[J]. Geophysical Prospecting for Petroleum,2019,2019,58(5):645-653.

[19] 孙丽梅."两宽一高"地震勘探技术在松辽盆地北部深层致密气储层预测中的应用[J]. 天然气地球科学,2020,31(10):1479-1488. SUN Limei.Application of "two wide and one high" seismic exploration technology in the prediction of deep tight gas reservoir in the north of Songliao Basin[J].Natural Gas Geoscience,2020,31(10):1479-1488.

[20] 代琦,崔若飞,赵立明,等. 卧龙湖矿区岩浆岩侵入煤层的综合解释[J]. 矿业安全与环保,2015,42(4):48-51. DAI Qi,CUI Ruofei,ZHAO Liming,et al. Integrated interpretation of magatic rock-intruded coal seam in Wolonghu Mining area[J]. Mining Safety & Environmental Protection,2015,42(4):48-51.

[21] 单蕊,李元杰. 地震多属性分析技术在小煤窑采空区探测中的应用研究[J]. 煤矿开采,2014,19(5):23-25. SHAN Rui,LI Yuanjie. Application of seismic multi-attribute analysis technology in small colliery gob detection[J]. Coal Mining Technology,2014,19(5):23-25.

[22] 张铁强. 地震属性及其实际数据的应用[D]. 北京:中国地质大学(北京),2010. ZHANG Tieqiang. Seismic atttibutes and its application to real data[D]. Beijing:China University of Geosciences(Beijing),2010.

[23] 祁雪梅,董守华. 地震相技术在煤层气勘探中的应用[J]. 物探与化探,2012,36(2):170-173. QI Xuemei, DONG Shouhua.The application of seismic facies technology to coal-bed methane exploration[J].Geophysical and Geochemical Exploration,2012,36(2):170-173.

[24] 左卫华,单蕊,朱伟. 岩性反演在煤层顶板砂体识别中的应用[J]. 煤田地质与勘探,2018,46(2):184-189. ZUO Weihua,SHAN Rui,ZHU Wei. Application of seismic lithology inversion in identifying sandstone of coalbed roof[J]. Coal Geology & Exploration,2018,46(2):184-189.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.