Coal Geology & Exploration
Abstract
The chuck is an important part of the coal mine tunnel drilling rig. The performance of the chuck directly affects the efficiency and quality of drilling. Aiming at the problems of the rubber cylinder hydraulic chuck. a new radial piston hydraulic chuck is studied. The objective of this paper is to devise a new radial piston hydraulic chuck instead of rubber-sleeve hydraulic chuck. Then, the motion mathematical model of radial piston hydraulic chuck was established based on the radial piston chuck clamping and loosening of system structure and working principle. At the same time, a dynamic co-simulation of chuck hydraulic control and mechanical system was made under the AMESim condition. According to the multi machine coupling model, the response and the clamping force characteristics of the clamping system were analyzed in detail, and the test bench was set up for verification. The research results show that the component saucer reed features of the radial chuck key have bigger influence on the system characteristics. By optimizing the performance parameters of the disc spring, a set of key parameters is obtained. The clamping time of radial chuck is 0.325 s, similar to the clamping time of rubber-sleeve chuck 0.325 s, and the release time is 0.275 s, close to the release time of rubber-sleeve chuck 0.300 s. In other words, it can be interchangeable with the rubber sleeve hydraulic chuck to meet the functional requirements of the drilling rig .Beside, the simulation results are consistent with the experimental results. This proves the radial chuck model is accurate. The results of this study will provide theoretical basis for the series design and improvement of new radial piston chuck.
Keywords
radial piston chuck, response characteristics, clamping force characteristics, mathematical model, AMESim
DOI
10.3969/j.issn.1001-1986.2020.05.031
Recommended Citation
LIANG Chunmiao, YAO Ningping, YAO Yafeng,
et al.
(2020)
"Simulation and experimental study on dynamic characteristics of radial piston hydraulic chuck,"
Coal Geology & Exploration: Vol. 48:
Iss.
5, Article 32.
DOI: 10.3969/j.issn.1001-1986.2020.05.031
Available at:
https://cge.researchcommons.org/journal/vol48/iss5/32
Reference
[1] 冯德强. 钻机设计[M]. 武汉:中国地质大学出版社,1993:167-169. FENG Deqiang. Drilling rig design[M]. Wuhan:China University of Geosciences Press,1993:167-169.
[2] 魏欢欢,殷新胜. 胶筒式液压卡盘存在的问题及改进[J]. 煤田地质与勘探,2017,45(5):186-190. WEI Huanhuan,YIN Xinsheng. Problems and improvements of rubber-sleeve type hydraulic chuck[J]. Coal Geology & Exploration,2017,45(5):186-190.
[3] 陈晋市,刘昕晖,王同建,等. 全液压制动系统液压制动阀的动态特性[J]. 哈尔滨工业大学学报,2013,45(5):75-79. CHEN Jinshi,LIU Xinhui,WANG Tongjian,et al. Dynamic characteristic of hydraulic brake valve of full hydraulic braking system[J]. Journal of Harbin Institute of Technology,2013,45(5):75-79.
[4] 成大先,王德夫,姬奎生,等. 机械设计手册:单行本:弹簧[M]. 第6版. 北京:化学工业出版社,2017. CHENG Daxian,WANG Defu,JI Kuisheng,et al. Mechanical design manual:Pamphlet:Spring[M]. 6th edition. Beijing:Chemical Industry Press,2017.
[5] 田宏亮,胡少韵. 沟槽式卡瓦与钻杆摩擦系数的试验研究[J]. 煤田地质与勘探,2003,31(1):62-64. TIAN Hongliang,HU Shaoyun. Experimental study on frictional factor between chuck jaw and drilling rode[J]. Coal Geology & Exploration,2003,31(1):62-64.
[6] 辛德忠,龚宪生,王清峰. 基于负载自适应的煤矿用钻机卡盘动态夹紧理论[J]. 煤炭学报,2013,38(3):498-504. XIN Dezhong,GONG Xiansheng,WANG Qingfeng. Dynamic clamping theory of chuck use in collieries drilling rig based on load self-adaptation[J]. Journal of China Coal Society,2013,38(3):498-504.
[7] 张春辉,赵静一,秦靖,等. 基于余压控制的液压制动系统性能研究[J]. 农业机械学报,2015,45(2):335-342. ZHANG Chunhui,ZHAO Jingyi,QIN Jing,et al. Performance study and test of hydraulic braking system based on remaining pressure control[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,45(2):335-342.
[8] 丁明慧. 乘用车线控液压制动系统执行器动态特性研究[D]. 长春:吉林大学,2018. DING Minghui. Research on actuator dynamic characteristics of hydraulic brake-by-wire system for passenger car[D]. Changchun:Jilin University,2018.
[9] 刘杰. 胶轮车全液压制动系统制动压力动态特性研究[J]. 煤炭工程,2014,46(3):93-96. LIU Jie. Study on braking pressure dynamic features of full hydraulic braking system in rubber tire vehicle[J]. Coal Engineering,2014,46(3):93-96.
[10] 汤何胜,訚耀保,杜广杰. 带平衡阀的挖掘机行走马达液压制动特性[J]. 吉林大学学报(工学版),2014,44(3):680-685. TANG Hesheng,YIN Yaobao,DU Guangjie. Hydraulic braking characteristic of traveling motor for excavator with a balance valve[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(3):680-685.
[11] 张东升,毛君,刘占胜. 刮板输送机启动及制动动力学特性仿真与实验研究[J]. 煤炭学报,2016,41(2):513-521. ZHANG Dongsheng,MAO Jun,LIU Zhansheng. Dynamics simulation and experiment on the starting and braking of scraper conveyor[J]. Journal of China Coal Society,2016,41(2):513-521.
[12] 张建明,刘庆修,田宏亮,等. 煤矿井下千米定向钻机液压控制特性分析[J]. 煤炭学报,2012,37(增刊2):341-345. ZHANG Jianming,LIU Qingxiu,TIAN Hongliang,et al. Performance analysis of hydraulic control for kilometer directional rig used in underground coalmine[J]. Journal of China Coal Society,2012,37(Sup.2):341-345.
[13] 李军霞,寇子明. 下运带式输送机复合制动系统仿真及试验研究[J]. 煤炭学报,2015,40(增刊2):553-559. LI Junxia,KOU Ziming. Simulation and experimental study of a composite brake system for downward belt conveyor[J].Journal of China Coal Society,2015,40(Sup. 2):553-559.
[14] 王健健,冯平法,张建富,等. 高速旋转动力卡盘动态夹紧力的有限元计算方法[J]. 华中科技大学学报(自然科学版),2015,43(3):7-11. WANG Jianjian,FENG Pingfa,ZHANG Jianfu,et al. Finite element computing method for dynamic clamping force of high-speed rotating power chuck[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2015,43(3):7-11.
[15] 马明芳,刘焕峰,张立斌,等. 事故车辆制动力检测中可控转矩加载方法的仿真研究[J]. 汽车工程,2017,39(11):1274-1280. MA Mingfang,LIU Huanfeng,ZHANG Libin,et al. A simulation study on controllable torque loading method in measuring braking force of accident vehicle[J]. Automotive Engineering,2017,39(11):1274-1280.
[16] 陈晋市,刘昕晖,王同建,等. 全液压制动系统的仿真分析与试验[J]. 吉林大学学报(工学版),2012,42(2):360-364. CHEN Jinshi,LIU Xinhui,WANG Tongjian,et al. Performance simulation and test of full hydraulic braking system[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(2):360-364.
[17] 郭锐,唱荣蕾,赵静一,等. 液压制动系统蓄能器充液特性研究[J]. 农业机械学报,2014,45(7):7-12. GUO Rui,CHANG Ronglei,ZHAO Jingyi,et al. Research on Accumulator charging characteristics of hydraulic brake system[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(7):7-12.
[18] 牛礼民,周亚洲,杨洪源. 基于Agent的电液复合制动系统防抱死控制研究[J]. 中国机械工程,2017,28(13):1567-1573. NIU Limin,ZHOU Yazhou,YANG Hongyuan. Research on anti-lock control of electro-hydraulic braking systems based on Agent[J]. China Mechanical Engineering,2017,28(13):1567-1573.
[19] 张春辉. 100吨矿用自卸车电液控制系统性能研究[D]. 秦皇岛:燕山大学,2015. ZHANG Chunhui. Performance research of electro-hydraulic control system for 100 ton mining dump truck[D]. Qinhuangdao:Yanshan University,2015.
[20] 邢佶慧,黄河,张家云,等. 碟形弹簧力学性能研究[J]. 振动与冲击,2015,34(22):167-172. XING Jihui,HUANG He,ZHANG Jiayun,et al. Mechanical properties of disc springs[J]. Journal of Vibration and Shock,2015,34(22):167-172.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons