Coal Geology & Exploration


Wide-band, high-power and short-residual acoustic wave sources are the key technology for high-resolution detection of large-scale complex structures, in order to solve the contradiction between detection distance and resolution, a new acoustic wave detection instrument is developed by using the acoustic transmitter made of giant magnetostrictive material(GMM) as the source. The focal center frequency is 5 kHz, and the excitation voltage is 300-600 V, it has the characteristics of large radiated sound power, short residual vibration(3.5 cycles) and frequency band width(1-3 kHz), which solves the problem of the high resolution acoustic wave detection. Its greatest advantage is that the acoustic signal generated each time has good consistency, and can be excited by single point and multiple times. The signal-to-noise ratio can be improved by multiple superposition data processing technology. The problem of high-resolution acoustic detection of M-scale structure body has solved the contradiction between acoustic detection distance and resolution, and has been successfully applied to the detection of top coal thickness in coal mine stope. The field survey results show that the high power acoustic wave detection system can reliably extract 4-7 m of reflected wave signals at the interface of deep coal and rock; The wavelet analysis results show that with the help of wavelet multi-resolution analysis to enhance resolution, the accuracy and reliability of top coal thickness detection in stope are improved, it provides an effective way for accurate detection of top coal thickness.


giant magnetostrictive material, acoustic wave, wavelet analysis, coal thickness, detection




[1] 李平,杜军. 浅底层剖面探测综述[J]. 海洋通报,2011,30(3):344-350. LI Ping,DU Jun. Review on the probing of sub-bottom profiler[J]. Marine Science Bulletin,2011,30(3):344-350.

[2] 朱国维,王怀秀,刘盛东. 声波探测综放面顶煤厚度的试验研究[J]. 煤炭科学技术,1997,25(12):17-20. ZHU Guowei,WANG Huaixiu,LIU Shengdong. Experimental study on acoustic detection of top-coal thickness in fully-mechanized top-coal caving face[J]. Coal Science and Technology,1997,25(12):17-20.

[3] 施龙青,徐东晶,邱梅,等. 采场底板破坏深度计算公式的改进[J]. 煤炭学报,2013,38(增刊2):299-303. SHI Longqing,XU Dongjing,QIU Mei,et al. Improved on the formula about the depth of damaged floor in working area[J]. Journal of China Coal Society,2013,38(Sup.2):299-303.

[4] 许延春,谢小锋,董检平,等. 在相似模拟试验中利用超声波检测技术探测底板破坏深度[J]. 煤矿开采,2016,21(1):7-11. XU Yanchun,XIE Xiaofeng,DONG Jianping,et al. Ultrasonic testing of floor breakage depth on similar simulation[J]. Coal Mining Technology,2016,21(1):7-11.

[5] 程学丰,刘盛东,刘登宪. 煤层采后围岩破坏规律的声波CT探测[J]. 煤炭学报,2001,26(2):153-155. CHENG Xuefeng,LIU Shengdong,LIU Dengxian. Sound-wave CT detection for failure patterns of surrounding rock after mining[J]. Journal of China Coal Society,2001,26(2):153-155.

[6] 简文彬,简洪钰. 声波探测技术判别某水电站坝址区岩体缺陷[J]. 地下空间与工程学报,2006,2(6):1053-1056. JIAN Wenbin,JIAN Hongyu. Exploration of rock mass disfigurement for a hydropower station dam site by acoustic wave test[J]. Chinese Journal of Underground Space and Engineering,2006,2(6):1053-1056.

[7] 于师建. 复杂结构声波电磁波层析成像方法和应用研究[D]. 哈尔滨:哈尔滨工业大学,2008. YU Shijian. Method and application of acoustic and electromagnetic wave tomography for complex structures[D]. Harbin:Harbin Institute of Technology,2008.

[8] 肖柏勋,刘明贵,肖文治. 一种新型的工程岩体探测震源:超磁致伸缩声波发射器[J]. 地学前缘,1996,3(1/2):198-202. XIAO Baixun,LIU Minggui,XIAO Wenzhi. Ultra-magne­tostrictive sonic generator:A new vibration source for detecting rock mass quality[J]. Earth Science Frontiers,1996,3(1/2):198-202.

[9] 程久龙,于师建,宋扬,等. 煤层底板破坏深度的声波CT探测试验研究[J]. 煤炭学报,1999,24(6):576-580. CHENG Jiulong,YU Shijian,SONG Yang,et al. Detection of the failure depth of coal seam floor by acoustic wave computer tomography[J]. Journal of China Coal Society,1999,24(6):576-580.

[10] 曾庚鑫. 超磁致伸缩功率超声换能器理论分析与实验研究[D]. 广州:华南理工大学,2013. ZENG Gengxin. Theoretical analysis and experimental study of the giant magnetostrictive power ultrasonic transducer[D]. Guangzhou:South China University of Technology,2013.

[11] 陈旭玲,朱如鹏,陈阳. 多场耦合下超磁致伸缩材料特性与应用综述[J]. 机械传动,2016,40(10):181-184. CHEN Xuling,ZHU Rupeng,CHEN Yang. Review of performance and application of giant magnetostrictive materials under the multi-field coupling[J]. Mechanical Transmission,2016,40(10):181-184.

[12] 房善想,曾露平,初永臣. 稀土超磁致伸缩超声换能器的研制与试验[J]. 电加工与模具,2019(6):61-65. FANG Shanxiang,ZENG Luping,CHU Yongchen. The development and experiment of rare-earth giant magnetostrictive ultrasonic transducer[J]. Electric Machining and Mould,2019(6):61-65.

[13] 张明明,梁利喜,蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田,2016,23(6):825-828. ZHANG Mingming,LIANG Lixi,JIANG Shaolong. Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J]. Fault-Block Oil & Gas Field,2016,23(6):825-828.

[14] 赵协广. 煤厚探测数值模拟与信号小波分析研究[D]. 青岛:山东科技大学,2004. ZHAO Xieguang. Simulation of thickness of top coal detection and signal wavelet analyzing researchment[D]. Qingdao:Shandong University of Science and Technology,2004.

[15] 程院莲,鲍鸿,李军,等. 压电陶瓷应用研究进展[J]. 中国测试技术,2005,31(2):12-14. CHENG Yuanlian,BAO Hong,LI Jun,et al. Research progress in applications of piezoelectric ceramic[J]. China Measurement Technology,2005,31(2):12-14.

[16] 王天资,周志勇,李伟,等. 高温压电振动传感器及陶瓷材料研究应用进展[J]. 传感器与微系统,2020,39(6):1-4. WANG Tianzi,ZHOU Zhiyong,LI Wei,et al. Progress in research and application of high temperature piezoelectric vibration sensors and piezo ceramic materials[J]. Transducer and Microsystem Technologies,2020,39(6):1-4.

[17] 吴丰收,卢松. 声波CT在箱梁底板质量评价应用研究[J]. 地下空间与工程学报,2017,13(增刊1):314-318. WU Fengshou,LU Song. Application of sound wave ct technique in evaluating the quality of box girder floor[J]. Chinese Journal of Underground Space and Engineering,2017,13(Sup.1):314-318.

[18] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

[19] 于师建,刘家琦. 煤岩界面弱反射波小波多分辨分析[J]. 岩石力学与工程学报,2005,24(18):3224-3228. YU Shijian,LIU Jiaqi. Wavelet multi-resolution analysis of weak reflected wave from the interfaces of coal seam and strata[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(18):3224-3228.

[20] 于师建,王宗胜,刘延欣. 小波多尺度分析在煤厚探测中的应用[J]. 煤田地质与勘探,2005,33(5):70-72. YU Shijian,WANG Zongsheng,LIU Yanxin. Application of wavelet multiresolution analysis to detecting thickness of coal seam[J]. Coal Geology & Exploration,2005,33(5):70-72.

[21] 黄忠来,张建中. 利用探地雷达频谱反演层状介质几何与电性参数[J]. 地球物理学报,2013,56(4):1381-1391. HUANG Zhonglai,ZHANG Jianzhong. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal[J]. Chinese Journal of Geophysics,2013,56(4):1381-1391.

[22] 张迅,赵宇,阮灵辉,等. 基于小波变换分析箱梁振动噪声的时频特性[J]. 西南交通大学学报,2020,55(1):109-117. ZHANG Xun,ZHAO Yu,RUAN Linghui,et al. Time-frequency characteristics of box-girder vibration and noise based on wavelet transform[J]. Journal of Southwest Jiaotong University,2020,55(1):109-117.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.