Coal Geology & Exploration
Abstract
In order to study the development of secondary faults and fracture, a boundary element method (BEM) combined with seismic interpretation of main faults and geo-mechanics is discussed. Firstly, with the Anderson's theory of faulting, the classification of secondary fault tectonic evolution events is improved under the combination of fault and stress; secondly, the stress tensor order reduction and linear superposition principle are applied to simplify the stress and displacement balance equation, and the Monte Carlo method is used to inverse the paleo-stress field. After all, the equilibrium equation of stress, strain and discontinuous displacement is solved to obtain the current stress distribution of stratum and to analyze the state of secondary fault and fracture, fracture opening or fracture relative density. Based on the geological data of the experimental area, the boundary element geo-mechanical model is established to simulate the secondary faults. The distribution of the present stress field and the information of the secondary faults are extracted. The experimental results show that the minimum horizontal principal stress is mainly in the direction of NW, and the cross fault zones are widely developed between the main faults, and the fault development zones have strong connectivity, which provides the reference data for the geological engineering design and hidden disaster assessment.
Keywords
BEM, secondary fault and fracture, stress field, Monte Carlo, fracture
DOI
10.3969/j.issn.1001-1986.2020.05.026
Recommended Citation
LU Ziqing, ZHU Shujie, ZHANG Xiaowen,
et al.
(2020)
"Experiment of secondary fault information mining based on boundary element method,"
Coal Geology & Exploration: Vol. 48:
Iss.
5, Article 27.
DOI: 10.3969/j.issn.1001-1986.2020.05.026
Available at:
https://cge.researchcommons.org/journal/vol48/iss5/27
Reference
[1] 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129-136. LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield[J]. Coal Geology & Exploration,2019,47(2):129-136.
[2] 刘源,KONIETZKY H. 基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究[J]. 地质力学学报,2019,25(5):840-852. LIU Yuan,KONIETZKY H. Particle-based modeling of crack propagation during pull-apart basin development[J]. Journal of Geomechanics,2019,25(5):840-852.
[3] 刘敬寿,丁文龙,肖子亢,等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展,2019,34(6):2283-2300. LIU Jingshou,DING Wenlong,XIAO Zikang,et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics(in Chinese),2019,34(6):2283-2300.
[4] 刘志伟. 地震波方程时间域边界元法数值模拟[D]. 长春:吉林大学,2004. LIU Zhiwei. Value imitation of seismic wave equation using time-domain boundary element method[D]. Changchun:Jilin University,2004.
[5] 管西竹,符力耘,陶毅,等. 复杂地表边界元-体积元波动方程数值模拟[J]. 地球物理学报,2011,54(9):2357-2367. GUAN Xizhu,FU Liyun,TAO Yi,et al. Boundary-volume integral equation numerical modeling for complex near surface[J]. Chinese Journal of Geophysics,2011,54(9):2357-2367.
[6] 杨平,李海银,胡蕾,等. 提高裂缝预测精度的解释性处理技术及其应用[J]. 石油物探,2015,54(6):681-689. YANG Ping,LI Haiyin,HU Lei,et al. Interpretative processing techniques and their applications in improving fracture prediction accuracy[J]. Geophysical Prospecting for Petroleum,2015,54(6):681-689.
[7] 王飞,程礼军,刘俊峰,等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探,2015,43(5):113-116. WANG Fei,CHENG Lijun,LIU Junfeng,et al. Research and application of post-stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration,2015,43(5):113-116.
[8] 狄贵东,孙赞东,庞雄奇,等. 应力场模拟约束下的碳酸盐岩裂缝综合预测:以塔中地区ZG8井区为例[J]. 石油物探,2016,55(1):150-156. DI Guidong,SUN Zandong,PANG Xiongqi,et al. Comprehensive fracture prediction technology constrained by stress field simulation:A case study from ZG8 area of central Tarim basin[J]. Geophysical Prospecting for Petroleum,2016,55(1):150-156.
[9] 田中英,张茂省,毋远召. 综合物探在高家湾滑坡群前缘裂缝探查中的应用[J]. 工程地球物理学报,2019,16(6):822-828. TIAN Zhongying,ZHANG Maosheng,WU Yuanzhao. Application of integrated geophysical exploration in the cracks detection of the front edge in Gaojiawan[J]. Chinese Journal of Engineering Geophysics,2019,16(6):822-828.
[10] 张震,张新涛,徐春强,等. 渤海海域428潜山构造演化及其对油气成藏的控制[J]. 东北石油大学学报,2019,43(4):69-77. ZHANG Zhen,ZHANG Xintao,XU Chunqiang,et al. Tectonic evolution and its controlling on hydrocarbon accumulation of 428 Buried Hill in Bohai Sea[J]. Journal of Northeast Petroleum University,2019,43(4):69-77.
[11] 樊晓东,李忠权,陈国飞,等. 井震联合断层识别技术在南贝尔凹陷东次凹中的应用[J]. 成都理工大学学报(自然科学版),2018,45(5):640-648. FAN Xiaodong,LI Zhongquan,CHEN Guofei,et al. Application of joint well-seismic technique to fault interpretation in Southern Beier Sag,Hailaer basin,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2018,45(5):640-648.
[12] 庄益明,宋利虎,刘镜竹. 蚂蚁追踪技术在三维地震精细解释中的应用:以淮北祁南煤矿82采区为例[J]. 煤田地质与勘探,2018,46(2):173-176. ZHUANG Yiming,SONG Lihu,LIU Jingzhu. Application of ant tracking technology in 3D seismic fine interpretation of faults:A case study on mining district No.82 in Huaibei Qinan coal mine[J]. Coal Geology & Exploration,2018,46(2):173-176.
[13] 吴正阳,莫修文,柳建华,等. 裂缝性储层分级评价中的卷积神经网络算法研究与应用[J]. 石油物探,2018,57(4):618-626. WU Zhengyang,MO Xiuwen,LIU Jianhua,et al. Convolutional neural network algorithm for classific action evaluation of fractured reservoirs[J]. Geophysical Prospecting for Petroleum,2018,57(4):618-626.
[14] 周长松,邹胜章,夏日元,等. 太原盆地地裂缝发育规律及防控措施[J]. 煤田地质与勘探,2016,44(2):73-78. ZHOU Changsong,ZOU Shengzhang,XIA Riyuan,et al. Development regularity and control measures of ground fissures in Taiyuan basin[J]. Coal Geology & Exploration,2016,44(2):73-78.
[15] 丁中一,钱祥麟,霍红,等. 构造裂缝定量预测的一种新方法:二元法[J]. 石油与天然气地质,1998,19(1):3-5. DING Zhongyi,QIAN Xianglin,HUO Hong,et al. A new method for quantitative prediction of tectonic fractures:Two factor method[J]. Oil & Gas Geology,1998,19(1):3-5.
[16] 季宗镇. 卞闵杨地区阜宁组储层裂缝定量研究[D]. 青岛:中国石油大学,2010. JI Zongzhen. Quantitative prediction of reservoir fracture of Funing Group in Bian-Min-Yang region[D]. Qingdao:China University of Petroleum,2010.
[17] JEYAKUMARAN M,RUDNICKI J W,KEER L M. Modeling slip zones with triangular dislocation elements[J]. Bulletin of the Seismological Society of America,1992,82(5):2153-2169.
[18] THOMAS A L. Poly3D:A three-dimensional,polygonal element,displacement discontinuity boundary element computer program with applications to fractures,faults,and cavities in the earth's crust[D]. California:Stanford University,1993.
[19] POLLARD D,MAERTEN F,MAERTEN L,et al. Improved 3D modeling of complex fault geometries using Poly3D,an elastic boundary element code[C]//AGU Fall Meeting Abstracts,2001.
[20] MEADE B J. Algorithms for the calculation of exact displacements,strains,and stresses for triangular dislocation elements in a uniform elastic half space[J]. Computers & Geosciences,2007, 33(8):1064-1075.
[21] 龚发雄,单业华,林舸,等. 松辽盆地中部后裂谷早期正断层系形成机制[J]. 地球科学:中国地质大学学报,2008,33(4):547-554. GONG Faxiong,SHAN Yehua,LIN Ge,et al. Mechanism of early post-rift normal faults in the central Songliao basin,northeastern China[J]. Earth Science:Journal of China University of Geosciences,2008,33(4):547-554.
[22] WU K,OLSON J E. A simplified three-dimensional displacement discontinuity method for multiple fracture simulations[J]. International Journal of Fracture,2015,193(2):191-204.
[23] SWYER M,DAVATZES N,CLADOUHOS T,et al. Washington play fairway analysis-poly 3D Matlab fault modeling scripts with input data to create permeability potential models[R]. DOE Geothermal Data Repository;AltaRock Energy Inc,2017.
[24] GHOLAMI R,MOJOLAGBE J,MENSHOV A,et al. H-matrix arithmetic for fast direct and iterative method of moment solution of surface-volume-surface EFIE for 3-D radiation problems[J]. Progress in Electromagnetics Research B,2018,82:189-210.
[25] PLATEAUX R,JOONNEKINDT J P,MAERTEN F M,et al. Maps of natural fracture reactivation likelihood:A comparison between homogeneous and heterogeneous stress fields[C]//Third EAGE Workshop on Naturally Fractured Reservoirs. European Association of Geoscientists & Engineers,2018(1):1-7.
[26] 朱志澄,曾佐勋,樊光明. 构造地质学[M]. 北京:中国地质大学出版,2008. ZHU Zhicheng,ZENG Zuoxun,FAN Guangming. Structural geology[M]. Beijing:China University of Geosciences Press,2008.
[27] MAERTEN L,GILLESPIE P,DANIEL J M. Three-dimensional geomechanical modeling for constraint of subseismic fault simulation[J]. AAPG Bulletin,2006,90(9):1337-1358.
[28] FOSDICK R L,VIRGA E G. A variational proof of stress theorem of Cauchy[J]. Archives of Rational Mechanics and Analysis,1998:95-103.
[29] JENSEN O K,BRESLING S,CHRISTENSEN O W,et al. Natural fracture distribution in reservoirs modeled by back stripping and finite element stress analysis[C]//SPE Symposium on Reservoir Simulation. Society of Petroleum Engineers,1989.
[30] RUBINSTEIN R Y,KROESE D P. Simulation and the Monte Carlo method[M]. John Wiley & Sons,2007.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons