Coal Geology & Exploration
Abstract
The development degree of natural fractures is the main factor affecting coalbed methane productivity. In order to accurately obtain the distribution position of the natural fractures in the a coalbed methane field in the southern Qinshui basin, 7 refracturing wells in the area were adopted by surface microseismic vector scanning to monitor the natural fractures. A certain amount of three-component geophones were deployed around the fracturing well to collect microseismic events in the surrounding reservoir during fracturing, and after Semblance superposition, the fracture energy slices at different times in the monitoring area were obtained to explain the natural fractures in the monitoring area. Comparing the single well productivity of the well group showed a good correlation with the monitored natural fractures, revealing that natural fractures are the main controlling factor affecting single well productivity, and at the same time showed that the CBM reservoir has strong heterogeneity and natural fractures were localized. Due to the development characteristics and the relatively small scattered area, conventional 3D seismic prediction methods are difficult to identify effectively. The technology can accurately identify the development of natural fractures in coalbed methane reservoirs, and provide reliable guidance for the adjustment of well placement and measures for layer selection.
Keywords
coalbed methane, natural fracture, fracturing, microseismic vector scanning, monitoring, Qinshui basin
DOI
10.3969/j.issn.1001-1986.2020.05.025
Recommended Citation
L.
(2020)
"Microseismic vector scanning-based natural fracture monitoring of the coalbed methane wells,"
Coal Geology & Exploration: Vol. 48:
Iss.
5, Article 26.
DOI: 10.3969/j.issn.1001-1986.2020.05.025
Available at:
https://cge.researchcommons.org/journal/vol48/iss5/26
Reference
[1] 王金,康永尚,姜杉钰,等. 沁水盆地寿阳区块和柿庄区块煤层气开发条件对比[J]. 煤田地质与勘探,2017,45(4):56-62. WANG Jin,KANG Yongshang,JIANG Shanyu,et al. Difference of CBM development conditions in Shouyang and Shizhuang blocks,Qinshui basin[J]. Coal Geology & Exploration,2017,45(4):56-62.
[2] 余杰,秦瑞宝,梁建设,等. 煤层气"甜点"测井判别与产量预测:以沁水盆地柿庄南区块为例[J]. 新疆石油地质,2017,38(4):482-487. YU Jie,QIN Ruibao,LIANG Jianshe,et al. Sweet spot identification with well-logging data and production prediction for coalbed methane:A case study from southern Shizhuang block in Qinshui basin[J]. Xinjiang Petroleum Geology,2017,38(4):482-487.
[3] 王哲,徐礼贵,付晶,等. 鄂尔多斯盆地东缘BD区块煤层气富集沉积控制作用及有利区预测[J]. 天然气地球科学,2016,27(2):387-396. WANG Zhe,XU Ligui,FU Jing,et al. Sedimentary controls of coalbed methane accumulation and prediction of favorable area in the BD area eastern margin of Ordos basin[J]. Natural Gas Geoscience,2016,27(2):387-396.
[4] 李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探,2015,43(2):28-32. LI Guihong. Selection of the favorable coalbed methane(CBM) blocks in eastern Ordos basin[J]. Coal Geology & Exploration, 2016,27(2):387-396.
[5] 苗雅楠,李相方,肖芝华,等. 甲烷在煤孔隙内的赋存特征及其对产能的影响[J]. 天然气工业,2018,38(增刊1):24-30. MIAO Yanan,LI Xiangfang,XIAO Zhihua,et al. Occurrence characteristics of methane in coal pores and its influence on productivity[J]. Natural Gas Industry,2018,38(Sup.1):24-30.
[6] 贾慧敏,胡秋嘉,祁空军,等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探,2019,47(5):104-110. JIA Huimin,HU Qiujia,QI Kongjun,et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration,2019,47(5):104-110.
[7] 郭广山,邢力仁,廖夏,等. 基于储层"三品质"的煤层气产能主控地质因素分析[J]. 天然气地球科学,2018,29(8):1198-1204. GUO Guangshan,XING Liren,LIAO Xia,et al. Analysis of main controlling geological factors of production based on "three qualities" of CBM reservoir[J]. Natural Gas Geoscience,2018,29(8):1198-1204.
[8] 白生宝,王凤琴,杜厚余,等. 煤储层条件对煤层气产能的影响分析:以鄂尔多斯盆地东南某区块为例[J]. 天然气勘探与开发,2015,38(2):47-50. BAI Shengbao,WANG Fengqin,DU Houyu,et al. Impact of coal-reservoir conditions on CBM productivity:An example from one block in southeastern Ordos basin[J]. Natural Gas Exploration & Development,2015,38(2):47-50.
[9] 李勤,马随波,赵斌. 各向异性煤层裂隙流体因子及地震波速度响应[J]. 煤田地质与勘探,2019,47(6):167-173. LI Qin,MA Suibo,ZHAO Bin. Fluid factor of fracture and seismic velocity response in anisotropic coal beds[J]. Coal Geology & Exploration,2019,47(6):167-173.
[10] 刘人和,刘飞,周文,等. 沁水盆地煤岩储层单井产能影响因素[J]. 天然气工业,2008,28(7):30-33. LIU Renhe,LIU Fei,ZHOU Wen,et al. An analysis of factors influencing single well deliverability of coalbed methane in the Qinshui basin[J]. Natural Gas Industry,2008,28(7):30-33.
[11] 李俊,崔新瑞,张聪,等. 影响煤层气井产能差异的主控地质因素分析:以樊庄区块北部为例[J]. 中国煤层气,2019,16(1):13-16. LI Jun,CUI Xinrui,ZHANG Cong,et al. Analysis of main controlling geological factors influencing the production capacity of CBM wells:Taking north Fanzhuang block as example[J]. China Coalbed Methane,2019,16(1):13-16.
[12] 薛海飞,朱光辉,王伟,等. 沁水盆地柿庄区块煤层气井压裂增产效果关键影响因素分析与实践[J]. 煤田地质与勘探,2019,47(4):76-81. XUE Haifei,ZHU Guanghui,WANG Wei,et al. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area,Qinshui basin[J]. Coal Geology & Exploration,2019,47(4):76-81.
[13] 伊永祥,唐书恒,张松航,等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探,2019,47(5):118-126. YI Yongxiang,TANG Shuheng,ZHANG Songhang,et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration,2019,47(5):118-126.
[14] 沈琛,梁北援,李宗田. 微破裂向量扫描技术原理[J]. 石油学报,2009,30(5):744-748. SHEN Chen,LIANG Beiyuan,LI Zongtian. Principle of vector scanning technique for micro-fractures[J]. Acta Petrolei Sinica,2009,30(5):744-748.
[15] 芮拥军.地面微地震水力压裂监测可行性分析[J]. 物探与化探,2015,39(2):341-345. RUI Yongjun. Feasibility analysis of surface micro-seismic hydraulic fracturing monitoring[J]. Geophysical and Geochemical Exploration,2015,39(2):341-345.
[16] 梁北援,王会卿. 微破裂向量扫描在微震监测中的解释原则[J]. 地球物理学进,2019,34(4):1314-1322. LIANG Beiyuan,WANG Huiqing. Interpretation of vector scanning for microseismic[J]. Progress in Geophysics,2019,34(4):1314-1322.
[17] 张永成,郝海金,李兵,等. 煤层气水平井微地震成像裂缝监测应用研究[J]. 煤田地质与勘探,2018,46(4):67-71. ZHANG Yongcheng,HAO Haijin,LI Bing,et al. Application of microseismic monitoring and imaging of fractures in horizontal CBM well[J]. Coal Geology & Exploration,2018,46(4):67-71.
[18] 梁北援,程百利,吴壮坤,等. 微破裂向量扫描技术的自动化数据处理[J]. 地球物理学进展,2017,32(1):377-386. LIANG Beiyuan,CHENG Baili,WU Zhuangkun,et al. Data processing automatically in vector scanning for microseismic[J]. Progress in Geophysics,2017,32(1):377-386.
[19] 杨瑞召,李德伟,庞海玲,等. 页岩气压裂微地震监测中的裂缝成像方法[J]. 天然气工业,2017,37(5):31-37. YANG Ruizhao,LI Dewei,PANG Hailing,et al. Fracture imaging of the surface based microseismic monitoring in shale gas cracking:Methods and application[J]. Natural Gas Industry,2017,37(5):31-37.
[20] LACAZETTE A,VERMILYE J,FEREJA S,et al. Ambient fracture imaging:A new passive seismic method[C]//UnconvenÂtional Resources Technology Conference,12-14 August,2013,Denver,Colorado. USA.
[21] 王维波,周瑶琪,春兰. 地面微地震监测SET震源定位特性研究[J]. 中国石油大学学报(自然科学版),2012,36(5):45-50. WANG Weibo,ZHOU Yaoqi,CHUN Lan. Characteristics of source location by emission tomography for surface based on microseismic monitoring[J]. Journal of China University of Petroleum,2012,36(5):45-50.
[22] 刘子雄,陈玲. 四维影像裂缝监测技术在致密气砂体展布研究中的应用[J]. 中国石油勘探,2019,24(6):815-821. LIU Zixiong,CHEN Ling. Application of 4D microseismic fracture monitoring for studying tight gas sandstone distribution[J]. China Petroleum Exploration,2019,24(6):815-821.
[23] 周德山,韩文功,李振春,等. 基于相对走时计算的地面微地震监测SET定位算法[J]. 地球物理学进展,2016,31(6):2495-2500. ZHOU Deshan,HAN Wengong,LI Zhenchun,et al. Source location method for surface microseismic monitoring based on relative travel time calculation[J]. Progress in Geophysics,2016,31(6):2495-2500.
[24] 梁北援,冷传波. 微破裂向量扫描原理的研发进展[J]. 地球物理学进展,2016,31(4):1620-1627. LIANG Beiyuan,LENG Chuanbo. Development of vector scanning for microseismic[J]. Progress in Geophysics,2016,31(4):1620-1627.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons