•  
  •  
 

Coal Geology & Exploration

Abstract

Graphene is an emerging carbon nanomaterial in the 21st century, has excellent properties and shows great application potential in many fields. Coal is the most abundant and the cheapest carbon source with unique structure and material composition. The application of coal in the development and the application of new carbonaceous materials such as graphene and their composites is a work worthy of further exploration. The development of coal-based graphene can both promote the clean utilization of coal and enhance the added value of coal resources. In this paper, the research developments in coal structure, the mechanism of coal graphitization, as well as the development of the research and preparation of coal-based graphene at home and abroad were reviewed in detail. In addition, according to the current research situation of coal-based graphene, the existing problems and future prospect of the research on coal-based graphene were put forward. At present, the research on the preparation of coal-based graphene and its derivatives is still in its infancy. The focus of the research is on the optimization of product preparation and performance. There are few studies on the influence of coal petrography characters on product quality. The difference of structure and composition of raw coal will ultimately affect the structure and performance of coal-based graphene, while the structural evolution of coal is significantly affected by geological factors. Therefore, in the future,the research on the influence of coal original structure and material composition on the product of coal-based graphene should be strengthened, so as to provide theoretical support for promoting the study on coal-based graphene and improving the clean and efficient utilization of coal resources.

Keywords

coal-based graphene, raw materials, preparation techniques, research progress, prospect

DOI

10.3969/j.issn.1001-1986.2020.05.001

Reference

[1] 中国石墨烯产业技术创新战略联盟. 石墨烯材料的名词术语和定义:Q/LM 01CGS001-2013[S]. 北京:中国标准出版社,2013. China Innovation Alliance of the Graphene Industry. Definitions and terminologies of graphene materials:Q/LM 01CGS001-2013[S]. Beijing:Standards Press of China,2013.

[2] TIAN Tian,LI Zhiqiang,LEE E-C. Sequence-specific detection of DNA using functionalized graphene as an additive[J]. Biosensors and Bioelectronics,2014,53:336-339.

[3] LIU Jingquan,CUI Liang,LOSIC D. Graphene and graphene oxide as new nanocarriers for drug delivery applications[J]. Acta Biomaterialia,2013,9:9243-9257.

[4] PANDEY A P,MORE M P,KARANDE K P,et al. Optimization of desolvation process for fabrication of lactoferrin nanoparticles using quality by design approach[J]. Artifical Cells Nanomedicine Biotechnology,2016,45(6):1101-1114.

[5] WERTZ D L,BISSELL M. Relating the nonideal diffraction from the graphene layer stacking peak to the aliphatic carbon abundance in bituminous coals[J]. Energy & Fuels,1994,8(3):613-617.

[6] MARZEC A. Macromolecular and molecular model of coal structure[J]. Fuel Processing Technology,1986,14:39-46.

[7] SUN Yanqiu,ALEMANY L B,BILLUPS W E,et al. Structural dislocations in anthracite[J]. The Journal of Physical Chemistry Letters,2011,2:2521-2524.

[8] WANG Ruwei,SUN Ruoyu,LIU Guijian,et al. A review of the biogeochemical controls on the occurrence and distribution of polycyclic aromatic compounds(PACs) in coals[J]. Earth-Science Reviews,2017,171:400-418.

[9] 谢克昌. 煤结构和反应性的多方位认识和研究:Ⅰ. 煤的结构[J]. 煤炭转化,1992,15(1):24-30. XIE Kechang. Systematical understanding and research on coal structure and reactivity:The structure aspects[J]. Coal Conversion,1992,15(1):24-30.

[10] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社,2002. XIE Kechang. Structure and reactivity of coal[M]. Beijing:Science Press,2002.

[11] 袁明,蔺华林,李克健. 煤结构模型及其研究方法[J]. 洁净煤技术,2013,19(2):42-46. YUAN Ming,LIN Hualin,LI Kejian. Coal macromolecular structure models and relevant research methods[J]. Clean Coal Technology,2013,19(2):42-46.

[12] MATHEWS J P,CHAFFEE A L. The molecular representations of coal:A review[J]. Fuel,2012,96:1-14.

[13] FUCHS W,SANDOFF A G. Theory of coal pyrolysis[J]. Industrial & Engineering Chemistry Research,1942,34(5):567-571.

[14] GIVEN P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel,1960,39(2):147-153.

[15] WISER W H. Reported in division of fuel chemistry[J]. Preprints,1975,20(1):122.

[16] WENDER I. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews:Science and Engineering,1976,14(1):97-129.

[17] SPIRO C L,KOSKY P G. Space filling models for coal 2:Extension to coals of various ranks[J]. Fuel,1982,61(11):1080-1087.

[18] SHINN J H. From coal to single stage and two-stage products:A reactive model of coal structure[J]. Fuel,1984,63(9):1187-1196.

[19] 杨文宽. 腐殖煤的热降解机理和生烃率[J]. 石油与天然气地质,1987,8(1):26-37. YANG Wenkuan. Thermo-degradation mechanism and hydrocarbon productivity of humic coal[J]. Oil & Gas Geology,1987,8(1):26-37.

[20] TROMP P J J,JACOB M. Slow and rapid pyrolysis of coal[M]. Boston:Kluwer Academic Publishers,1987:305-338.

[21] HATCHER P G. Chemical structural models for coalified wood(vitrinite) in low rank coal[J]. Organic Geochemistry,1990,16(4/5/6):959-968.

[22] SHINN J H. Visualization of complex hydrocarbon reaction systems[J]. Preprints-American Chemical Society,Division of Fuel Chemistry,1996,41(2):510-515

[23] PAPPANO P,MATHEWS J P,SCHOBERT H H. Structural determinations of Pennsylvania anthracites[J]. Preprints-American Chemical Society,Division of Fuel Chemistry,1999,44(3):567-570.

[24] 杨起,韩德馨. 煤田地质学(上)[M]. 北京:煤炭工业出版社,1989. YANG Qi,HAN Dexin. Coalfield geology[M]. Beijing:China Coal Industry Publishing House,1989.

[25] 张双全. 煤化学[M]. 徐州:中国矿业大学出版社,2019. ZHANG Shuangquan. Coal chemistry[M]. Xuzhou:China University of Mining and Technology Press,2019.

[26] HIRSCH P B. X-Ray scattering from coals[J]. Proceedings of the Royal Society of London A:Mathematical and Physical Sciences,1954,226(1165):143-169.

[27] GIVEN P H,MARZEC A,BARTON W A. The concept of a mobile or molecular phase within the macromolecular network of coals:A debate[J]. Fuel,1986,65(2):155-163.

[28] NISHIOKA M. The associated molecular nature of bituminous coal[J]. Fuel,1992,71(8):941-948.

[29] OBERLIN A. Chemistry and physics of carbon[M]. New York:Dekker,1980.

[30] GRIGORIEW B Y H,CICHOWSKA G. Spatial coal structure models[J]. Journal of Applied Crystallography,1990,23(3):209-210.

[31] 秦志宏. 煤有机质溶出行为与煤嵌布结构模型[M]. 徐州:中国矿业大学出版社,2008. QIN Zhihong. Dissolution behavior of organic matters in coal and coal in built state structural model[J]. Xuzhou:China University of Mining and Technology Press,2008.

[32] 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报,2017,46(5):939-958. QIN Zhihong. Theory of coal embedded structure model[J]. Journal of China University of Mining & Technology,2017,46(5):939-958.

[33] 秦志宏,李兴顺,陈娟,等. 煤的黏结性来源及形成机理[J]. 中国矿业大学学报,2010,39(1):64-69. QIN Zhihong,LI Xingshun,CHEN Juan,et al. Origin and formation mechanism of coal caking property[J]. Journal of China University of Mining & Technology,2010,39(1):64-69.

[34] 李久庆,秦勇,陈义林. 超无烟煤中石墨微晶产出状态与成因[J]. 煤田地质与勘探,2020,48(1):27-33. LI Jiuqing,QIN Yong,CHEN Yilin. Occurrence and origin of graphite microcrystal in meta-anthracite[J]. Coal Geology & Exploration,2020,48(1):27-33.

[35] 李焕同,王楠,朱志蓉,等. 高煤级煤-隐晶质石墨的Raman光谱表征及结构演化[J]. 煤田地质与勘探,2020,48(1):34-41. LI Huantong,WANG Nan,ZHU Zhirong,et al. Raman spectrum characteristic and structural evolution of high rank coals-cryptocrystalline graphite[J]. Coal Geology & Exploration,2020,48(1):34-41.

[36] 杨起. 煤变质作用研究[J]. 现代地质,1992,6(4):437-443. YANG Qi. The study of coal metamorphism[J]. Geoscience,1992,6(4):437-443.

[37] 陈家良,邵震杰,秦勇. 能源地质学[M]. 徐州:中国矿业大学出版社,2004. CHEN Jialiang,SHAO Zhenjie,QIN Yong. Energy geology[M]. Xuzhou:China University of Mining and Technology Press,2004.

[38] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994. QIN Yong. Micropetrology and structural evolution of high-rank coals in P. R. China[M]. Xuzhou:China University of Mining and Technology Press,1994.

[39] 丁正云,王路,曾欢,等. 福建大田-漳平地区构造-热对煤系石墨成矿及赋存的控制探讨[J]. 煤田地质与勘探,2020,48(1):55-61. DING Zhengyun,WANG Lu,ZENG Huan,et al. The control of mineralization and occurrence of coal-based graphite by tectonic-heat in Zhangping-Datian area,Fujian[J]. Coal Geology & Exploration,2020,48(1):55-61.

[40] 李阔,刘钦甫,宋波涛,等. 湖南新化煤系石墨结构演化及其热反应行为[J]. 煤田地质与勘探,2020,48(1):42-47. LI Kuo,LIU Qinfu,SONG Botao,et al. Investigation on structural evolution and thermal reaction of coal-based graphite from Xinhua County,Hunan Province[J]. Coal Geology & Exploration,2020,48(1):42-47.

[41] 王路,彭扬文,曹代勇,等. 湖南鲁塘煤系石墨矿区构造格局及控矿机制[J]. 煤田地质与勘探,2020,48(1):48-54. WANG Lu,PENG Yangwen,CAO Daiyong,et al. The tectonic framework and controlling mechanism of coal-based graphite in Lutang mining area,Hunan Province[J]. Coal Geology & Exploration,2020,48(1):48-54.

[42] 傅献彩,沈文霞,姚天扬. 物理化学[M]. 北京:高等教育出版社,2010. FU Xiancai,SHEN Wenxia,YAO Tianyang. Physical chemistry[M]. Beijing:Higher Education Press,2010.

[43] BROOKS J D,SMITH J W. The diagenesis of plant lipids during the formation of coal,petroleum and natural gas:I. Changes in the n-paraffin hydrocarbons[J]. Geochimica et Cosmochimica Acta,1967,31(12):2389-2397.

[44] MOTHIOUX M,LANDAIS P,MONIN J C. Comparison between natural and artifical maturation series of humic coals from the Mahakam delta,Indonesia[J]. Organic Geochemistry,1985,8(4):275-292.

[45] PETZOUKHA Y,SELIVANOV O. Promotion of petroleum formation by source rock deformation in:Org geochemistry advance and application in the natural environment[M]. Manckerster:Manckerster University Press,1991:312-314.

[46] 姜峰,杜建国,王万春,等. 高温超高压模拟实验研究:I. 温压条件下对有机质成熟作用的影响[J]. 沉积学报,1998,16(3):153-155. JIANG Feng,DU Jianguo,WANG Wanchun,et al. The study on high-pressure-high-temperature aqueous pyrolysis:I. Influence of temperature and pressure on maturation of organic matter[J]. Acta Sedimentologica Sinica,1998,16(3):153-155.

[47] STONE I J,COOK A C. The influence of some tectonic structures upon vitrinite reflectance,Pennsylvania[J]. Journal of Geology,1979,87(5):479-508.

[48] LEVINE J R,DAVIS A. The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold-and-thrust belt,Pennsylvania[J]. Geological Society of America Bulletin,1989,101(10):1333-1347.

[49] 曹代勇,李小明,张守仁. 构造应力对煤化作用的影响-应力降解机制与应力缩聚机制[J]. 中国科学D辑:地球科学,2006,36(1):59-68. CAO Daiyong,LI Xiaoming,ZHANG Shouren. Influence of tectonic stress on coalification mechanism of stress degradation and stress condensation[J]. Science in China Ser.D Earth Science,2006,36(1):59-68.

[50] 张守仁,曹代勇. 煤的局部定向-整体秩理扩展机理研究[J]. 中国学术期刊文摘,2001,7(11):1428-1429. ZHANG Shouren,CAO Daiyong. Evolution mechanism of coal extension from local molecular to Integer orderliness[J]. Chinese Science Abstracts,2001,7(11):1428-1429.

[51] 李士贤. 石墨[M]. 北京:化学工业出版社,1991. LI Shixian. Graphite[M]. Beijing:Chemical Industry Press,1991.

[52] 廖慧元. 隐晶质石墨与无烟煤的简单鉴别[J]. 非金属矿1994(2):10-11. LIAO Huiyuan. Simple identification of aphanitic graphite and anthracite[J]. Non-Metallic Mines,1994(2):10-11.

[53] 曹代勇,张鹤,董业绩,等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘,2017,24(5):317-327. CAO Daiyong,ZHANG He,DONG Yeji,et al. Research status and key orientation of coal-based graphite mineral geology[J]. Earth Science Frontiers,2017,24(5):317-327.

[54] BONNAMY S,OBERLIN A. Heat-treatment of two heavy petroleum products containing vanadium and nickel[J]. Carbon,1982,20(6):499-504.

[55] 王亮,程龙彪,蔡春城,等. 岩浆热事件对煤层变质程度和吸附-解吸特性的影响[J]. 煤炭学报,2014,39(7):1275-1282. WANG Liang,CHENG Longbiao,CAI Chuncheng,et al. Influence of thermal events of magma intrusion on coal seams metamorphic grade and adsorption and desorption characteristics[J]. Journal of China Coal Society,2014,39(7):1275-1282.

[56] 曹代勇. 大别山北麓杨山煤系高煤级煤的变形变质作用研究[M]. 北京:地质出版社,2011. CAO Daiyong. Study on deformation and metamorphism of high rank coal in Yangshan coal series at the northern foot of Dabie mountain[M]. Beijing:Geological Publishing House,2011.

[57] BOWAL K B,MARTIN J W,KRAFT M. Partitioning of polycyclic aromatic hydrocarbons in heterogeneous clusters[J]. Carbon,2018,143:247-256.

[58] RICHTER H,BENISH T G,MAZYAR O A,et al. Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame[J]. Proceedings of the Combustion Institute,2000,28(2):2609-2618.

[59] HATCHER P G,FAULON J L,WENZEL K A,et al. A structural model for lignin-derived vitrinite from high-volatile bituminous coal(coalified wood)[J]. Energy & Fuels,1992,6(6):813-820.

[60] LEWIS I C. Chemistry of carbonization[J]. Carbon,1982,20(6):519-529.

[61] 郑辙. 煤基石墨微结构的高分辨电镜研究[J]. 矿物学报,1991,11(3):214-218. ZHENG Zhe. HRTEM studies of microstructure of coal-based graphite[J]. Acta Mineralogica Sinica,1991,11(3):214-218.

[62] FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A:Mathematical,Physical & Engineering Sciences,1951,209(1097):196-218.

[63] OBERLIN A,TERRIERE G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon,1975,13(5):367-376.

[64] GELLER I,WALKER P L. Comparison of properties of carbon and graphite bodies produced from anthracite and petroleum coke[C]//MROZOWSKI S. Proceedings of the Fifth Conference on Carbon. Oxford:Pergamon Press,1963,2:471-482.

[65] BLANCHE C. New data on anthracite graphitizibility[C]//American Carbon Society,Proceedings of 22nd Biennial Conference on Carbon,1995:694-695.

[66] WALLACE P R. The band theory of graphite[J]. Physical Review,1947,71(9):622-634.

[67] MOURAS S,HAMM A,DJURADO D,et al. Synthesis of first stage graphite intercalation compounds with fluorides[J]. Revue-de Chime Minerale,1987,24(5):572-582.

[68] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.

[69] 孙红娟,彭同江. 石墨氧化-还原法制备石墨烯材料[M]. 北京:科学出版社,2015. SUN Hongjuan,PENG Tongjiang. Preparation of graphene materials by graphite oxidation-reduction method[M]. Beijing:Science Press,2015.

[70] WARNER J H,SCHAFFEL F,BACHMATIUK A,et al. Graphene:Fundamentals and emergent applications[M]. Amsterdam:Elsevier Press,2013.

[71] CAO Yuan,FATEMI V,FANG Shiang. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature,2018,556(7699):43-50.

[72] CAO Yuan,FATEMI V,DEMIR A,et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature,2018,556(7699):80-84.

[73] WANG Shiren,TAMBRAPARNI M,QIU Jingjing,et al. Thermal expansion of graphene composites[J]. Macromolecules,2009,42(14):5251-5255.

[74] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.

[75] BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.

[76] AGO H,OGAWA Y,TSUJI M,et al. Catalytic growth of graphene:Toward large-area single-crystalline graphene[J]. The Journal of Physical Chemistry Letters,2012,3(16):2228-2236.

[77] GHOSH S,CALIZO I,TEWELDEBRHAN D,et al. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters,2008,92(15):151911-1-151911-3.

[78] NOVOSELOV K S,FAL'KO V I,COLOMBO L,et al. A road map for graphene[J]. Nature,2012,490(7419):192-200.

[79] NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.

[80] CHEN D,FENG H,LI J. Graphene oxide:Preparation,functionalization,and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053.

[81] AKCOLTEKIN S,EL K M,KOHLER B,et al. Graphene on insulating crystalline substrates[J]. Nanotechnology,2009,20(15):155601.

[82] HERNANDEZ Y,NICOLOSI V,LOTYA M,et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568.

[83] JANOWSKA I,CHIZARI K,ERSEN O,et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia[J]. Nano Research,2010,3(2):126-137.

[84] PU N,WANG C,SUNG Y,et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters,2009,63(23):1987-1989.

[85] LIANG X,FU Z,CHOU S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Letters,2007,7(12):3840-3844.

[86] 迟彩霞,乔秀丽,赵东江. 氧化-还原法制备石墨烯[J]. 化学世界,2016,57(4):251-256. CHI Caixia,QIAO Xiuli,ZHAO Dongjiang. Preparation of graphene by oxidation-reduction method[J]. Chemical World,2016,57(4):251-256.

[87] BRODIE B C. Researches on the atomic weight of graphite[J]. Quarterly Journal of the Chemical Society of London,1959,1859(149):249-259.

[88] HUMMERS J W S,OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1341.

[89] STAUDENMAIER L. Verfahren zur darstellung der graphitsaure[J]. Berichte Der Deutschen Chemischen Gesellschaft,1898(32):1481-1487.

[90] 何为,杨颖,王守绪,等. 导电油墨制备技术及应用进展[J]. 材料导报,2009,23(11):30-33. HE Wei,YANG Ying,WANG Shouxu,et al. Preparation technology and application progress of conductive inks[J]. Materials Review,2009,23(11):30-33.

[91] MARCANO D C,KOSYNKIN D V,BERLIN J M,et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814.

[92] SOMANI P R,SOMANI S P,UMENO M. Planer nanographenes from camphor by CVD[J]. Chemical Physics Letters,2006,430(1/2/3):56-59.

[93] 汤春苗. CVD石墨烯制备及其电学性质的研究[D]. 哈尔滨:哈尔滨理工大学,2015. TANG Chunmiao. Investigation on fabrication and electronic properties of graphene grown by CVD[D]. Harbin:Harbin University of Science and Technology,2015.

[94] BERGER C,SONG Z,LI T,et al. Ultrathin epitaxial graphite:2d electron gas properties and a route toward grapheme-based nanoelectronics[J]. The Journal of Physical Chemistry B,2004,108(52):19912-19916.

[95] RUTTER G M,CRAIN J N,GUISINGER N P,et al. Scattering and interference in epitaxial graphene[J]. Science,2007,317(5835):219-222.

[96] OHTA T,BOSTWICK A,SEYLLER T,et al. Controlling the electronic structure of bilayer graphene[J]. Science,2006,313(5789):951-954.

[97] WANG Lin,TIAN Linhai,WEI Guodong,et al. Epitaxial growth of graphene and their applications in devices[J]. Journal of Inorganic Materials,2011,26(10):1009-1019.

[98] JUNG U,LEE Y G,KANG C G,et al. Quantitative analysis of interfacial reactions at a graphene/SiO2 interface using the discharge current analysis method[J]. Applied Physics Letters,2014,104(15):151604-1-151604-4.

[99] WANG G,WANG B,PARK J,et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation[J]. Carbon,2009,47(14):3242-3246.

[100] JIAO L,ZHANG L,WANG X,et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458(7240):877-880.

[101] WANG L,TIAN C,WANG H,et al. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization[J]. The Journal of Physical Chemistry C,2010,114(19):8727-8733.

[102] MATHEWS J P,FERNANDEZ A V,DANIEL J A,et al. Determining the molecular weight distribution of Pocahontas No.3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel,2010,89(7):1461-1469.

[103] FOX D,NEILL O A,ZHOU D,et al. Nitrogen assisted etching of graphene layers in a scanning electron microscope[J]. Applied Physics Letters,2011,98(24):243117-1-243117-3.

[104] DONG Z X,WEJINYA U C,ALBRECHT A M. Nanomanipulation of graphene using Atomic Force Microscopy[C]//IEEE International Conference on Nanotechnology. IEEE,2013:7-10.

[105] FERRARI A C,MEYER J C,SCARDACI V,et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):187401-1-187401-4.

[106] GUPTA A,CHEN G,JOSHI P,et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters,2006,6(12):2667-2673.

[107] GRAF D,MOLITOR F,ENSSLIN K,et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene[J]. Nano Letters,2007,7(2):238-242.

[108] TAKAGI H,MARUYAMA K,YOSHIZAWA N,et al. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel,2004,83:2427-2433.

[109] BAYSAL M,YÜRÜM A,YILDIZ B,et al. Structure of some western Anatolia coals investigated by FTIR,Raman,13C solid state NMR spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology,2016,163:166-176.

[110] 陈亮维,张名泉,杨楠,等. 用X射线衍射法研究无烟煤的石墨化转变[J]. 煤炭工程,2007(4):72-74. CHEN Liangwei,ZHANG Mingquan,YANG Nan,et al. Research on graphitization conversion of anthracite coal with X-ray diffraction method[J]. Coal Engineering,2007(4):72-74.

[111] MARSH H,MENENDEZ R. Carbons from pyrolysis of pitches,coals,and their blends[J]. Fuel Processing Technology,1988,20:269-296.

[112] ZHOU Quan,ZHAO Zongbin,ZHANG Yating,et al. Graphene sheets from graphitized anthracite coal:Preparation,decoration,and application[J]. Energy & Fuels,2012,26(8):5186-5192.

[113] 张亚婷,周安宁,张晓欠,等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化,2013,36(4):57-61. ZHANG Yating,ZHOU Anning,ZHANG Xiaoqian,et al. Preparation of the graphene from Taixi anthracite[J]. Coal Conversion,2013,36(4):57-61.

[114] 张亚婷. 煤基石墨烯的制备、修饰及应用研究[D]. 西安:西安科技大学,2015. ZHANG Yating. Preparation,modification,and application of coal-based-graphene[D]. Xi'an:Xi'an University of Science and Technology,2015.

[115] HUAN Xuan,TANG Yuegang,XU Jingjie. Structural characterization of graphenic material prepared from anthracites of different characteristics:A comparative analysis[J]. Fuel Processing Technology,2018,183:8-18.

[116] 郇璇. 煤基石墨烯与煤基石墨烯量子点结构影响因素研究[D]. 北京:中国矿业大学(北京),2019. HUAN Xuan. Study on the influence factors of the structure of coal cornerstone graphene and coal-based graphene quantum dots[D]. Beijing:China University of Mining & Technology (Beijing),2019.

[117] 唐跃刚,徐靖杰,郇璇,等. 云南小发路无烟煤基石墨烯制备与谱学表征[J]. 煤炭学报,2020,45(2):740-748. TANG Yuegang,XU Jingjie,HUAN Xuan,et al. Preparation and spectroscopic characterization of coal-based graphene from anthracite in Xiaofalu,Yunnan,China[J]. Journal of China Coal Society,2020,45(2):740-748.

[118] WANG Lu,ZHANG Hao,LI Yu. On the difference of characterization and supercapacitive performance of graphene nanosheets from precursors of inertinite-and vitrinite-rich coal[J]. Journal of Alloys and Compounds,2020,815:152502.

[119] VIJAPUR S H,WANG D,BOTTE G G. Raw coal derived large area and transparent graphene films[J]. ECS Solid State Letters,2013,2(7):M45-M47.

[120] WANG Dan,VIJAPUR S H,BOTTE G G. Coal char derived few-layer graphene anodes for lithium ion batteries[J]. Photonics,2014,1(3):251-259.

[121] SEEMA A,KALPANA A,GHOSH A K,et al. Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal[J]. Fuel,2015(147):35-42.

[122] 张亚婷,贾凯丽,刘国阳,等. 煤热解气CVD法制备石墨烯的研究[J]. 炭素技术,2018,37(6):36-40. ZHANG Yating,JIA Kaili,LIU Guoyang,et al. Graphene prepared by CVD method from coal pyrolysis gas[J]. Carbon Technology,2018,37(6):36-40.

[123] XU Hao,LIN Qiliang,ZHOU Tianhong,et al. Facile preparation of graphene nanosheets by pyrolysis of coal-tar pitch with the presence of aluminum[J]. Journal of Analytical & Applied Pyrolysis,2014(110):481-485.

[124] SEO H,KIM T,PARK C,et al. Value-added synthesis of graphene:Recycling industrial carbon waste into electrodes for high-performance electronic devices[J]. Scientific Reports,2015,5(1):1-10.

[125] BEALL G W,DURAIA E M,YU Q,et al. Single crystalline graphene synthesized by thermal annealing of humic acid over copper foils[J]. Physica E:Low-Dimensional Systems and Nanostructures,2014,56:331-336.

[126] POWELL C,BEALL G W. Graphene oxide and graphene from low grade coal:Synthesis,characterization and applications[J]. Current Opinion in Colloid & Interface Science,2015,20(5/6):362-366.

[127] DURAIA E S M,HENDERSON B,BEALL G W. Reduced humic acid nanosheets and its uses as nanofiller[J]. Journal of Physics and Chemistry of Solids,2015,85:86-90.

[128] DURAIA E S M,BEALL G W. Humidity sensing properties of reduced humic acid[J]. Sensors and Actuators B:Chemical,2015,220:2-18.

[129] SU P,CHIOU C. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate[J]. Sensors and Actuators B:Chemical,2014,200:9-18.

[130] LIN Wangde,LIAO Chihting,CHANG Tsanchang,et al. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process[J]. Sensors and Actuators B:Chemical,2015,209:555-561.

[131] MOOTHI K,IYUKE S E,MEYYAPPAN M,et al. Coal as a carbon source for carbon nanotube synthesis[J]. Carbon,2012,50(8):2679-2690.

[132] PATNEY H K,NORDLUND C,MOY A,et al. Fullerenes and nanotubes from coal[J]. Fullerene Science and Technology,1999,7(6):941-971.

[133] YU J L,LUCAS J,STREZOV V,et al. Coal and carbon nanotube production[J]. Fuel,2003,82(15):2025-2032.

[134] 李霞,曾凡桂,王威,等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报,2015,40(12):2900-2908. LI Xia,ZENG Fangui,WANG Wei,et al. FTIR characterization of structural evolution in low-middle rank coals[J]. Journal of China Coal Society,2015,40(12):2900-2908.

[135] 李霞,曾凡桂,王威,等. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报,2016,41(9):2298-2304. LI Xia,ZENG Fangui,WANG Wei,et al. Raman characterization of structural evolution in low-middle rank coals[J]. Journal of China Coal Society,2016,41(9):2298-2304.

[136] 杨家庆. 煤炭超高温制备石墨工艺及其设备研究[D]. 西安:西安科技大学,2015. YANG Jiaqing. The research about process and equipment of coal prepare to graphite in the ultra high temperature[D]. Xi'an:Xi'an University of Science and Technology,2015.

[137] 段旭琴,王祖讷,曲剑午. 神府煤惰质组与镜质组的结构性质研究[J]. 煤炭科学技术,2004,32(2):19-23. DUAN Xuqin,WANG Zune,QU Jianwu. Study on structural property of inertinite and vitrinite of Shenfu coal[J]. Coal Science and Technology,2004,32(2):19-23.

[138] 常海洲,王传格,曾凡桂,等. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报,2006,34(4):389-394. CHANG Haizhou,WANG Chuange,ZENG Fangui,et al. XPS comparative analysis of coal macerals with different reducibility[J]. Journal of Fuel Chemistry and Technology,2006,34(4):389-394.

[139] 舒新前,王祖讷,徐精求,等. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报,1996,24(5):50-57. SHU Xinqian,WANG Zune,XU Jingqiu,et al. Structural characteristics and differences among lithotypes[J]. Journal of Fuel Chemistry and Technology,1996,24(5):50-57.

[140] 田承圣,曾凡桂. 镜煤与丝炭结构的X射线衍射初步分析[J]. 太原理工大学学报(社科版),200,32(2):102-105. TIAN Chengsheng,ZENG Fangui. Analysis of structure between vitrain and fusain X-ray diffraction analysis[J]. Journal of Taiyuan University of Technology(Social Sciences Edition),2001,32(2):102-105.

[141] 罗陨飞,李文华. 中低变质程度煤显微组分大分子结构的XRD研究[J]. 煤炭学报,2004,24(3):338-341. LUO Yunfei,LI Wenhua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. Journal of China Coal Society,2004,24(3):338-341.

[142] 罗陨飞,李文华,陈亚飞. 中低变质程度煤显微组分结构的13C-NMR研究[J]. 燃料化学学报,2005,33(5):30-33. LUO Yunfei,LI Wenhua,CHEN Yafei. 13C-NMR analysis on different macerals of several low-to-medium rank coals[J]. Journal of Fuel Chemistry and Technology,2005,33(5):30-33.

[143] 罗陨飞. 煤的大分子结构研究:煤中惰质组结构及煤中氧的赋存形态[D]. 北京:煤炭科学研究总院,2002. LUO Yunfei. Study on macromolecular structure of coal:Inertinite structure in coal and occurrence form of oxygen in coal[D]. Beijing:Coal Science Research Institute,2002.

[144] 李文英,谢克昌. 平朔气煤的煤岩显微组分结构研究[J]. 燃料化学学报,1992,20(4):375-383. LI Wenying,XIE Kechang. Structure characterization of macerals from Pingshuo gas coal[J]. Journal of China Coal Society,1992,20(4):375-383.

[145] KIDENA K,KATSUYAMA M,MURATA S,et al. Study on plasticity of maceral concentrates in terms of their structural features[J]. Energy & Fuels,2002,16(5):1231-1238.

[146] 王传格,张妮,陈燕. 煤组分结构特征及其与热解行为的关系[J]. 煤炭转化,2011,34(3):11-16. WANG Chuange,ZHANG Ni,CHEN Yan. Relationship between structural characterization of macerals and their thermal behavior[J]. Coal Conversion,2011,34(3):11-16.

[147] LIN Q,GUET J M. Characterization of coals and macerals by X-ray diffraction[J]. Fuel,1990,69(7):821-825.

[148] 陈鹏,BODILY D M. 兖州煤煤岩分离及煤质素的性质-分离效果及V3亚组的性质[J]. 煤炭学报,1985,10(2):87-96. CHEN Peng,BODILY D M. Separation of Yanzhou coal and rock and properties of coal quality elements:Separation effect and properties of V3 subgroup[J]. Journal of China Coal Society,1985,10(2):87-96.

[149] GARCIA A B,CAMEÁN I,PINILLA J L. The graphitization of carbon nanofibers produced by catalytic decomposition of methane:Synergetic effect of the inherent Ni and Si[J]. Fuel,2010,89(8):2160-2162.

[150] NYATHI M S,CLIFFORD C B,SCHOBERT H H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites[J]. Fuel,2013,114:244-250.

[151] PAPPANO P J,SCHOBERT H H. Effect of natural mineral inclusions on the graphitizability of a Pennsylvania anthracite[J]. Energy & Fuels,2009,23(1):422-428.

[152] TANG Yuegang,HUAN Xuan,LAN Chunyuan. Effects of coal rank and high organic sulfur on the structure and optical properties of coal-based graphene quantum dots[J]. Acta Geologica Sinica(English Edition),2018,92(3):1218-1230.

[153] INAGAKI M. 天然石墨:形成的实验证据和特殊应用[J]. 地学前缘,2005,12(1):171-181. INAGAKI M. Nutural graphite:experimental evidence for its formation and novel application[J]. Earth Science Frontiers,2005,12(1):171-181.

[154] GONZÁLEZ D,MONTES-MORÁN M A,GARCIA A B. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from anthracites[J]. Energy & Fuels,2005,19(1):263-269.

[155] 王路,董业绩,张鹤,等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报,2018,3(1):9-19. WANG Lu,DONG Yeji,ZHANG He,et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology,2018,3(1):9-19.

[156] LAN Chunyuan,TANG Yuegang,HUAN Xuan,et al. Effects of minerals in anthracite on the formation of coal-based graphene[J]. Chemistry Select,2019,4(419):5937-5944.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.