•  
  •  
 

Coal Geology & Exploration

Abstract

Correctly understanding the micro-scale fracture characteristics of the Lower Cambrian shale and the evolution law of acoustic emission signals are of great reference value in the study of shale mechanical characteristics, fracture mechanism and shale gas development and utilization. In this paper, based on digital image processing technology, the non-uniform characterization of quartz-filled shale is carried out, and a numerical model is established using the real rock fracture analysis system RFPA2D-DIP to simulate the failure process of shale under different confining pressures. The test results show that under the micro-scale structure, the shale failure mode can be roughly summarized into three forms, namely inverted V shape(0,2 MPa), V shape(6 MPa) and inverted Z shape(10 MPa). Due to the irregular and non-uniform distribution of quartz mineral particles, the stress distribution has a significant difference in the shale micro-scale structure. When single-axis, the cumulative acoustic emission(AE) behaves as a “gentle-linear-gentle-stable” mode; when the confining pressure is 2 MPa, the cumulative AE behaves as a “gentle-nonlinear-surge-gentle-stable” mode; When the confining pressure is 6 MPa and 10 MPa, the cumulative AE behaves as a “slow-nonlinear-stable” mode. The research results provide important theoretical guidance for shale gas fracturing.

Keywords

digital image processing, shale, microstructure, failure modes, acoustic emission(AE)

DOI

10.3969/j.issn.1001-1986.2020.05.017

Reference

[1] 赵文智,董大忠,李建忠,等. 中国页岩气资源潜力及其在天然气未来发展中的地位[J]. 中国工程科学,2012,14(7):46-52. ZHAO Wenzhi,DONG Dazhong,LI Jianzhong,et al. The resource potential and future status in natural gas development of shale gas in China[J]. Strategic Study of CAE,2012,14(7):46-52.

[2] WU Zhonghu,ZUO Yujun,WANG Shanyong,et al. Numerical study of multi-period palaeotectonic stress fields in Lower Cambrian shale reservoirs and the prediction of fractures distribution:A case study of the Niutitang Formation in Feng'gang No.3 block,south China[J]. Marine and Petroleum Geology,2017,80:369-381.

[3] LOU Yili,WU Zhonghu,SUN Wenjibin,et al. Study on failure models and fractal characteristics of shale under seepage-stress coupling[J]. Energy Science & Engineering,2020,8(5):1634-1649.

[4] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701. ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:Characteristics,challenges and prospects(I)[J]. Petroleum Exploration and Development,2015,42(6):689-701.

[5] 徐旭辉,申宝剑,李志明,等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发,2020,10(1):1-8. XU Xuhui,SHEN Baojian,LI Zhiming,et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development,2020,10(1):1-8.

[6] 李希建,尹鑫,李维维,等. 贵州牛蹄塘组页岩气表面自由能研究[J]. 煤田地质与勘探,2019,47(1):101-106. LI Xijian,YIN Xin,LI Weiwei,et al. Surface free energy of shale gas in Niutitang Formation in Guizhou Province[J]. Coal Geology & Exploration,2019,47(1):101-106.

[7] ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:Characteristics,challenges and prospects(II)[J]. Petroleum Exploration and Development,2016,43(2):182-196.

[8] 刘曰武,高大鹏,李奇,等. 页岩气开采中的若干力学前沿问题[J]. 力学进展,2019,49:1-236. LIU Yuewu,GAO Dapeng,LI Qi,et al. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics,2019,49:1-236.

[9] WU Zhonghu,ZUO Yujun,WANG Shanyong,et al. Experimental study on the stress sensitivity and influence factors of shale under varying stress[J]. Shock and Vibration,2018,2018(12):1-9.

[10] 张驰,郭嘉梁,邵龙义. 京西青白口系下马岭组沉积相及页岩气地质条件分析[J]. 煤田地质与勘探,2018,46(4):86-92. ZHANG Chi,GUO Jialiang,SHAO Longyi. Sedimentary facies and shale gas geological conditions of Xiamaling Formation of Qingbaikouan System in western Beijing[J]. Coal Geology & Exploration,2018,46(4):86-92.

[11] JU Wei,WU Caifang,SUN Weifeng. Effects of mechanical layering on hydraulic fracturing in shale gas reservoirs based on numerical models[J]. Arabian Journal of Geosciences,2018,11:1-11.

[12] WANG Y,LI X,ZHANG Y X,et al. Gas shale hydraulic fracturing:A numerical investigation of the fracturing network evolution in the Silurian Longmaxi Formation in the southeast of Sichuan basin,China,using a coupled FSD approach[J]. Environmental Earth Sciences,2016,75(14):1-18.

[13] 刘俊新,张可,刘伟,等. 不同围压及应变速率下页岩变形及破损特性试验研究[J]. 岩土力学,2017,38(增刊1):43-52. LIU Junxin,ZHANG Ke,LIU Wei,et al. Experimental study of mechanical behaviours of shale under different confining pressures and different strain rates[J]. Rock and Soil Mechanics,2017,38(Sup.1):43-52.

[14] 衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3):609-616. HENG Shuai,YANG Chunhe,ZHANG Baoping,et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics,2015,36(3):609-616.

[15] 王泽鹏,顾义磊,李清淼,等. 不同围压下页岩声发射及破裂前兆信息研究[J]. 地下空间与工程学报,2018,14(1):78-85. WANG Zepeng,GU Yilei,LI Qingmiao,et al. Research on confining pressure effect on acoustic emission of shale and its main fracture precursor information[J]. Chinese Journal of Underground Space and Engineering,2018,14(1):78-85.

[16] 陈天宇,冯夏庭,张希巍,等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报,2014,33(9):1772-1779. CHEN Tianyu,FENG Xiating,ZHANG Xiwei,et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1772-1779.

[17] 梁运培,李清淼,顾义磊,等. 不同围压下页岩残余强度及破裂面特征的试验研究[J]. 采矿与安全工程学报,2017,34(6):1179-1185. LIANG Yunpei,LI Qingmiao,GU Yilei,et al. Experimental study on characteristics of post-peak residual strength and fracture surface of shale under various confining pressures[J]. Journal of Mining & Safety Engineering,2017,34(6):1179-1185.

[18] WU Zhonghu,ZUO Yujun,WANG Shanyong,et al. Numerical simulation and fractal analysis of mesoscopic scale failure in shale using digital images[J]. Journal of Petroleum Science and Engineering,2016,145:592-599.

[19] 魏元龙,杨春和,郭印同,等. 单轴循环荷载下含天然裂隙脆性页岩变形及破裂特征试验研究[J]. 岩土力学,2015,36(6):1649-1658. WEI Yuanlong,YANG Chunhe,GUO Yintong,et al. Experimental investigation on deformation and fracture characteristics of brittle shale with natural cracks under uniaxial cyclic loading[J]. Rock and Soil Mechanics,2015,36(6):1649-1658.

[20] 徐敬宾,杨春和,吴文,等. 页岩力学各向异性及其变形特征的试验研究[J]. 矿业研究与开发,2013,33(4):16-19. XU Jingbin,YANG Chunhe,WU Wen,et al. Experimental study of mechanics anisotropy and deformation characteristics of gas shale[J]. Mining Research and Development,2013,33(4):16-19.

[21] 朱泽奇,肖培伟,盛谦,等. 基于数字图像处理的非均质岩石材料破坏过程模拟[J]. 岩土力学,2011,32(12):3780-3786. ZHU Zeqi,XIAO Peiwei,SHENG Qian,et al. Numerical simulation of fracture propagation of heterogeneous rock material based on digital image processing[J]. Rock and Soil Mechanics,2011,32(12):3780-3786.

[22] 于庆磊,唐春安,朱万成,等. 基于数字图像的混凝土破坏过程的数值模拟[J]. 工程力学,2008,25(9):72-78. YU Qinglei,TANG Chun'an,ZHU Wancheng,et al. Digital image-based numerical simulation on failure process of concrete[J]. Engineering Mechanics,2008,25(9):72-78.

[23] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics,1951,18:293-297.

[24] 李冰峰,左宇军,李伟,等. 基于数字图像处理的含缺陷花岗岩破裂力学分析(1)[J]. 力学与实践,2016,38(3):262-268. LI Bingfeng,ZUO Yujun,LI Wei,et al. Analysis on fracture mechanics of granite containing flaws based on digital image processing(1)[J]. Mechanics in Engineering,2016,38(3):262-268.

[25] 娄义黎,邬忠虎,王安礼,等. 流固耦合作用下页岩破裂过程的数值模拟[J]. 煤田地质与勘探,2020,48(1):105-112. LOU Yili,WU Zhonghu,WANG Anli,et al. Numerical simulation of rupture process of shale under action of fluid-solid coupling[J]. Coal Geology & Exploration,2020, 48(1):105-112.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.