•  
  •  
 

Coal Geology & Exploration

Abstract

Hydraulic fracturing technology is widely used in various aspects such as mine rock burst prevention and surrounding rock depressurization, but there has been a lack of efficient and intuitive technology for evaluating the fracturing effectiveness. To solve this problem, a three-component borehole TEM detection method using dynamic source and reception unit was proposed, and detection equipment and supporting construction techniques suitable for construction in hydraulic fracturing holes were developed. Two engineering tests have been carried out in a coal mine. By comparing the processing results of the vertical components of the two detection data before and after fracturing, a pure anomaly field was extracted, and the distribution range of the main cracks was determined. The azimuth center of the body was positioned to complete the spatial three-dimensional imaging display of the fractures. The research shows that the borehole transient electromagnetic three-component detection technology can be combined with underground mine fracturing construction. The distribution of fracturing fluid can be obtained by comparing the detection results before and after fracturing, and then the development of fracturing fractures is analyzed to achieve the purpose of fracturing effect detection and evaluation.

Keywords

borehole transient electromagnetic method, hydraulic fracturing, three components, detection of fracturing effectiveness

DOI

10.3969/j.issn.1001-1986.2020.04.006

Reference

[1] 林柏泉,李子文,翟成,等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报,2011,28(3):452-455. LIN Baiquan,LI Ziwen,ZHAI Cheng,et al. Pressure relief and permeability-increasing technology based on high pressure pulsating hydraulic fracturing and its application[J]. Journal of Mining and Safety Engineering,2011,28(3):452-455.

[2] 徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173-178. XU Gang,PENG Suping,DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining & Technology,2011,40(2):173-178.

[3] 李安启,姜海,陈彩虹. 我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J]. 天然气工业,2004,24(5):91-94. LI Anqi,JIANG Hai,CHEN Caihong. Hydraulic fracturing practice and coalbed fracture model selecting for coalbed gas wells in China[J]. Natural Gas Industry,2004,24(5):91-94.

[4] 康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1-9. KANG Hongpu,FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology,2017,45(1):1-9.

[5] 张翠兰,郭臣业,许洋铖,等. 盐井一矿煤层水力压裂范围监测技术研究[J]. 西安科技大学学报,2014,34(4):462-466. ZHANG Cuilan,GUO Chenye,XU Yangcheng,et al. Monitoring technology research on the scope of hydraulic fracturing effect of coal bed in Yanjing No.1 coal mine[J]. Journal of Xi'an University of Science and Technology,2014,34(4):462-466.

[6] 陈海潮,唐有彩,钮凤林,等. 利用微地震参数评估水力压裂改造效果研究进展[J]. 石油科学通报,2016,1(2):198-208. CHEN Haichao,TANG Youcai,NIU Fenglin,et al. Recent advances in microseismic monitoring and implications for hydraulic fracturing mapping[J]. Petroleum Science Bulletin,2016,1(2):198-208.

[7] 袁永榜. 低透气煤层水力压裂范围综合物探检验技术试验研究[C]//中国地球物理学会信息技术专业委员会. 地球物理信息前沿技术研讨会论文摘要集. 2018:62-63. YUAN Yongbang. Experimental study on comprehensive geophysical testing technology for hydraulic fracture range of low permeability coal seam[C]//Information Technology Committee of China Geophysical Society. Abstracts of Symposium on advanced technology of geophysical information. 2018:62-63.

[8] 王先美,李俊峰,徐胜明,等. 湘中煤层气井水力压裂改造效果初评[J]. 中国煤层气,2018,15(5):3-8. WANG Xianmei,LI Junfeng,XU Shengming,et al. Preliminary evaluation on CBM well hydraulic fracturing in central Hunan Province[J]. China Coalbed Methane,2018,15(5):3-8.

[9] 张瑞林,谷志鹏. 基于TEM探测煤岩水力压裂有效影响范围的实验研究[J]. 煤炭技术,2015,34(3):95-98. ZHANG Ruilin,GU Zhipeng. Experiment al Study of effective scope of hydraulic fracturing in coal and rock seam based on transient electromagnetic method[J]. Coal Technology,2015,34(3):95-98.

[10] 段建华,汤红伟,王云宏. 基于微震和瞬变电磁法的煤层气井水力压裂监测技术[J]. 煤炭科学技术,2018,46(6):160-166. DUAN Jianhua,TANG Hongwei,WANG Yunhong. Detection technology of hydraulic fracturing in coalbed methane well based on microseismic and transient electromagnetic method[J]. Coal Science and Technology,2018,46(6):160-166.

[11] 范涛,程建远,王保利,等. 应用瞬变电磁虚拟波场成像方法检测井下煤层气水力压裂效果的试验研究[J]. 煤炭学报,2016,41(7):1762-1768. FAN Tao,CHENG Jianyuan,WANG Baoli,et al. Experimental study on imaging method of TEM pseudo wave-field to detect the effect of underground coal-bed gas hydraulic fracturing[J]. Journal of China Coal Society,2016,41(7):1762-1768.

[12] 范涛. 矿井巷道-钻孔瞬变电磁二维拟地震反演方法及应用[J]. 煤炭学报,2019,44(6):1804-1816. FAN Tao. Method and application on 2D pseudo-seismic inversion of roadway-borehole transient electromagnetic detection in coal mine[J]. Journal of China Coal Society,2019,44(6):1804-1816.

[13] 范涛. 矿井极小线圈单钻孔瞬变电磁方法检测煤层气水力压裂效果[J]. 煤炭学报. https://doi.org/10.13225/j.cnki.jccs.2019.0827. FAN Tao. Coalbed methane hydraulic fracturing effectiveness test using minimal coil single bore-hole transient electromagnetic method[J]. Journal of China Coal Society. https://doi.org/10.13225/j.cnki.jccs.2019.0827.

[14] 范涛. 孔巷瞬变电磁动源定接收方法探测采空区试验[J]. 煤炭学报,2017,42(12):3229-3238. FAN Tao. Experimental study on the exploration of coal mine goaf by dynamic source and fixed reception roadway borehole TEM detection method[J]. Journal of China Coal Society,2017,42(12):3229-3238.

[15] 李学潜,韩德品,王程,等. 巷-孔瞬变电磁法在探测含导水构造中的应用[J]. 中国煤炭地质,2019,31(3):77-82. LI Xueqian,HAN Depin,WANG Cheng,et al. Application of roadway-borehole TEM in water-bearing and water conducting structure prospecting[J]. Coal Geology of China,2019,31(3):77-82.

[16] 薛国强,于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展,2017,32(1):319-326. XUE Guoqiang,YU Jingcun. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics,2017,32(1):319-326.

[17] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.

[18] 韩德品,郭林生,赵利利,等. 瞬变电磁法快速探查煤矿突水构造关键技术及应用效果[J]. 煤田地质与勘探,2014,42(6):97-100. HAN Depin,GUO Linsheng,ZHAO Lili,et al. The key technology and application effects of transient electromagnetic method for rapid detecting of water inrush structure in coal mine[J]. Coal Geology & Exploration,2014,42(6):97-100.

[19] 范涛,赵兆,吴海,等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报,2014,39(5):932-940. FAN Tao,ZHAO Zhao,WU Hai,et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society,2014,39(5):932-940.

[20] 陈清礼. 瞬变电磁法全区视电阻率的二分搜索算法[J]. 石油天然气学报,2009,31(2):45-49. CHEN Qingli. Searching algorithm for full time apparent resistivity from tem electromotive force data[J]. Journal of Oil and Gas Technology,2009,31(2):45-49.

[21] 姜国庆,程久龙,孙晓云,等. 全空间瞬变电磁全区视电阻率优化二分搜索算法[J]. 煤炭学报,2014,39(12):2482-2488. JIANG Guoqing,CHENG Jiulong,SUN Xiaoyun,et al. Optimized binary search algorithm of full space transient electromagnetic method all-time apparent resistivity[J]. Journal of China Coal Society,2014,39(12):2482-2488.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.