Coal Geology & Exploration
Abstract
In order to study the characteristics of frequency dispersion response of the composite electrical properties of coal, the real part R and imaginary part X of the composite resistance of coal body at different direction in different measured areas were measured, the frequency dispersion characteristics were analyzed, different classical models were used to conduct data inversion and comparison. The results show that the composite electrical property parameters(absolute value of R and X) of coal are inversely proportional to the measured area, the characteristic frequency points are not offset, the X-frequency divergence decreases with the increase of measurement area; for the same measured area, the frequency dispersion response of the composite electrical property of coal at different direction is different, the frequency dispersion of the composite electrical curve deviates, the frequency dispersion of X parallel to coal bedding is greater than that vertical to bedding; Debye model and Cole-Cole model can be used to fit the dispersion curve of the composite electrical property of coal, but the former model has simple parameters and clear physical meaning, and coincides well the composite electrical frequency dispersion curve of coal. This study provides an experimental basis for monitoring the seam crack and evaluating coal seam permeability by the evaluation method of the composite electrical property.
Keywords
composite resistance, measurement area, measurement direction, composite resistance model
DOI
10.3969/j.issn.1001-1986.2020.04.031
Recommended Citation
MENG Hui, LI Jian, LEI Dongji,
et al.
(2020)
"Experimental study on the frequency dispersion response of composite electrical properties of coal,"
Coal Geology & Exploration: Vol. 48:
Iss.
4, Article 32.
DOI: 10.3969/j.issn.1001-1986.2020.04.031
Available at:
https://cge.researchcommons.org/journal/vol48/iss4/32
Reference
[1] 张文涛,吕品,孙晓梅,等. 张集矿综采工作面瓦斯治理措施及效果分析[J]. 中国安全生产科学技术,2014,10(1):103-108. ZHANG Wentao,LYU Pin,SUN Xiaomei,et al. Study on gas control measures and effect analysis in mechanized mining face of Zhangji coal mine[J]. Journal of Safety Science and Technology,2014,10(1):103-108.
[2] 么玉鹏,姜波,李明,等. 构造煤裂隙及渗流孔隙分形特征研究[J]. 煤矿安全,2016,47(8):5-8. ME Yupeng,JIANG Bo,LI Ming,et al. Study on fracture and seepage pore fractal characteristics of tectonic coal[J]. Safety in Coal Mines,2016,47(8):5-8.
[3] 潘结南,张召召,李猛,等. 煤的多尺度孔隙结构特征及其对渗透率的影响[J]. 天然气工业,2019,39(1):64-73. PAN Jienan,ZHANG Zhaozhao,LI Meng,et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry,2019,39(1):64-73.
[4] 王登科,吕瑞环,彭明,等.含瓦斯煤渗透率各向异性研究[J].煤炭学报,2018,43(4):1008-1015. WANG Dengke,LYU Ruihuan,PENG Ming,et al. Experimental study on anisotropic permeability rule of coal bearing methane[J]. Journal of China Coal Society,2018,43(4):1008-1015.
[5] 牛丽飞,曹运兴,石玢,等. 潞安矿区煤层渗透率的各向异性特征实验研究[J]. 中国安全生产科学技术,2019,15(9):82-87. NIU Lifei,CAO Yunxing,SHI Fen,et al. Experimental study on anisotropic characteristics of coal seam permeability in Lu'an mining area[J]. Journal of Safety Science and Technology,2019,15(9):82-87.
[6] 梁霄,周明顺,艾林,等. 煤储层渗透性核磁实验分析及测井评价[J]. 能源与环保,2017,39(2):65-69. LIANG Xiao,ZHOU Mingshun,AI Lin,et al. Nuclear magnetic resonance experimental analysis of coal reservoir permeability and well logging evaluation[J]. China Energy and Environmental Protection,2017,39(2):65-69.
[7] ZHENG Sijian,YAO Yanbin,LIU Dameng,et al. Characterizations of full-scale pore size distribution,porosity and permeability of coals:A novel methodology by nuclear magnetic resonance and fractal analysis theory[J]. International Journal of Coal Geology,2018,196:148-158.
[8] 陈序三,赵文杰,朱留方. 复电阻率测井方法及其应用[J]. 测井技术,2001,25(5):327-331. CHEN Xusan,ZHAO Wenjie,ZHU Liufang. Complex resistivity logging and its applications[J]. Logging Technology,2001,25(5):327-331.
[9] KRUSCHWITZ S,YARAMANCI U. Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method[J]. Journal of Applied Geophysics,2004,57(1):63-79.
[10] 孙斌,唐新功,向葵,等. 高温高压条件下泥质砂岩复电阻率测试与分析[J]. 工程地球物理学报,2016,13(3):277-284. SUN Bin,TANG Xingong,XIANG Kui,et al. Measurement and analysis of complex resistivity of argillaceous sandstone under high temperature and pressure[J]. Journal of Engineering Geophysics,2016,13(3):277-284.
[11] 窦春霞. 龙马溪组页岩岩石物理测试与激发极化特性研究[D]. 荆州:长江大学,2016. DOU Chunxia. Physical test and induced polarization characteristics of Longmaxi shale[D]. Jingzhou:Yangtze University,2016.
[12] 田刚,唐新功,向葵,等. 高压条件下含导电矿物的人工砂岩复电阻率研究[J]. 煤田地质与勘探,2019,47(2):183-188. TIAN Gang,TANG Xingong,XIANG Kui,et al. Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure[J]. Coal Geology & Exploration,2019,47(2):183-188.
[13] 池美瑶. 高温高压状态下致密岩石物性参数测试与分析[D]. 武汉:长江大学,2019. CHI Meiyao. Test and analysis of physical parameters of dense rock under high temperature and high pressure[D]. Wuhan:Yangtze University,2019.
[14] HALL S H,OLHOEFT G R. Nonlinear complex resistivity of some nickel sulphies from western Australia[J]. Geophysical Prospecting,2010,34(8):1255-1276.
[15] 安珊,李能根. 含水岩石复电阻率的实验研究[J]. 测井技术,1998,22(5):315-317. AN Shan,LI Nenggen. An investigation on multi-resistivity of aqueous rock[J]. Logging Technology,1998,22(5):315-317.
[16] 程辉,底青云,李帝铨. 频率信号激励下岩石电性参数研究[J]. 地球物理学进展,2010,25(3):918-925. CHENG Hui,DI Qingyun,LI Diquan. The discussion electrical properties of rocks base on frequency response characteristics[J]. Progress in Geophysics,2010,25(3):918-925.
[17] 范宜仁,陆介明,王光海,等. 岩石电阻率频散现象的实验研究[J]. 中国石油大学学报(自然科学版),1994,18(1):17-23. FAN Yiren,LU Jieming,WANG Guanghai,et al. Experimental study on rock resistivity dispersion phenomenon[J]. Journal of the University of Petroleum,China,1994,18(1):17-23.
[18] 柯式镇. 岩石电学参数扫频测量[J]. 地球物理学进展,2010,25(2):512-515. KE Shizhen. Frequency-swept measurement of electrical parameters of rock[J]. Progress in Geophysics,2010,25(2):512-515.
[19] 柯式镇,冯启宁,何亿成,等. 电极法复电阻率测井研究[J]. 石油学报,2006,27(2):89-92. KE Shizhen,FENG Qining,HE Yicheng,et al. Study on complex resistivity well logging with electrode antenna[J]. Acta Petrolei Sinica,2006,27(2):89-92.
[20] SHIN S W,PARK S G,SHIN D B. Spectral-induced polarization characteristics of rock types from the skarn deposit in Gagok Mine,Taebaeksan basin,South Korea[J]. Environmental Earth Sciences,2015,73(12):8325-8331.
[21] WAIT J R. A phenomenological theory of overvoltage for metallic particles[J]. Overvoltage Research and Geophysical Applications,1959(4):22-28.
[22] DIAS C A. Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics,2000,65(2):437-451.
[23] PELTON W H,WARD S H,HALLOF P G,et al. Mineral discrimination and removal of inductive coupling with multifrequency IP[J]. Geophysics,1978,43(3):588-609.
[24] 张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875. ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875.
[25] 王勃,刘盛东,张朋. 采用网络并行电法仪进行煤矿底板动态监测[J]. 中国煤炭地质,2009,21(3):53-57. WANG Bo,LIU Shengdong,ZHANG Peng. Application of network parallel electrical instrument on dynamic coal floor monitoring[J],Coal Geology of China,2009,21(3):53-57.
[26] 刘盛东,王勃,周冠群,等. 基于地下水渗流中地电场响应的矿井水害预警试验研究[J]. 岩石力学与工程学报,2009,28(2):267-272. LIU Shengdong,WANG Bo,ZHOU Guanqun,et al. Experimental research on mine floor water hazard early warning based on response of geoelectric field in groundwater seepage[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):267-272.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons