Coal Geology & Exploration
Abstract
Coalbed methane fields in Junlian area have good development potential, but the existence of a large number of low-production and low-efficiency wells has restricted the increase of productivity. This paper analyzes the coupling relationship between high-productivity wells and geological factors from the perspective of geological engineering integration, analyzes the causes of inefficient wells from three aspects of geology, drainage and engineering, and evaluates the corresponding reform measures. The results show that the formation of inefficient wells in the north and the west of the study area is mainly affected by gas-bearing properties, fault distribution, production horizons, production and drainage rhythms, and fracturing channeling wells. High-production wells in the middle and the south area have low water production, low flow pressure, long drainage time, low pulverized coal production and high TDS. For the treatment of low yield wells, it is found that the pickling effect is better, the secondary hydraulic fracturing needs to strictly control the construction parameters, and the effect of shock plugging is not obvious. The treatment of low-yield and low-efficiency wells for coalbed methane should start from the deployment of well locations, and carry out well location design and construction management around the integration of geology-engineering-discharge production.
Keywords
coalbed methane, causes of low yield wells, stimulation measures, pickling effect, secondary hydraulic fracturing, Junlian of Sichuan
DOI
10.3969/j.issn.1001-1986.2020.04.021
Recommended Citation
LI Ying, ZHENG Rui, LUO Kai,
et al.
(2020)
"Reasons of low yield and stimulation measures for CBM wells in Junlian area,"
Coal Geology & Exploration: Vol. 48:
Iss.
4, Article 22.
DOI: 10.3969/j.issn.1001-1986.2020.04.021
Available at:
https://cge.researchcommons.org/journal/vol48/iss4/22
Reference
[1] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64-68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64-68.
[2] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159. ZHANG Qun,GE Chungui,LI Wei,et al.A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150-159.
[3] 贾慧敏,胡秋嘉,祁空军,等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探,2019,47(5):104-110. JIA Huimin,HU Qiujia,QI Kongjun,et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration,2019,47(5):104-110.
[4] 朱庆忠,杨延辉,王玉婷,等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业,2017,37(10):27-34. ZHU Qingzhong,YANG Yanhui,WANG Yuting,et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry,2017,37(10):27-34.
[5] 张亚蒲,杨正明,鲜保安. 煤层气增产技术[J]. 特种油气藏,2006,13(1):95-98. ZHANG Yapu,YANG Zhengming,XIAN Bao'an. Coal-bed gas stimulation technology[J]. Special Oil & Gas Reservoirs,2006,13(1):95-98.
[6] 孙晗森,冯三利,王国强,等. 沁南潘河煤层气田煤层气直井增产改造技术[J]. 天然气工业,2011,31(5):21-23. SUN Hansen,FENG Sanli,WANG Guoqiang,et al. Stimulation technology of vertical coalbed methane gas wells in the Panhe CBM gas field,southern Qinshui basin[J]. Natural Gas Industry,2011,31(5):21-23.
[7] 许耀波. 液氮伴注辅助水力压裂技术在构造煤储层煤层气增产中的应用研究[J]. 中国煤层气,2012,9(4):29-31. XU Yaobo. Study on application of liquid nitrogen injection assisted hydro-fracturing technique to enhanced production of structural coal reservoir[J]. China Coalbed Methane,2012,9(4):29-31.
[8] 冯青. 煤层气井低产伤害诊断方法及应用[J]. 煤田地质与勘探,2019,47(1):86-91. FENG Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration,2019,47(1):86-91.
[9] 李金珊,杨敏芳,朱维耀,等. 川南筠连沐爱地区煤层含气量预测及控制因素分析[J]. 东北大学学报(自然科学版),2015,36(5):724-727. LI Jinshan,YANG Minfang,ZHU Weiyao,et al. Coalbed gas content prediction and controlling factors analysis of coalbed in Junlian Mu'ai area at south of Sichuan[J]. Journal of Northeastern University(Natural Science),2015,36(5):724-727.
[10] 薛海飞,朱光辉,王伟,等. 沁水盆地柿庄区块煤层气井压裂增产效果关键影响因素分析与实践[J]. 煤田地质与勘探,2019,47(4):76-81. XUE Haifei,ZHU Guanghui,WANG Wei,et al. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area,Qinshui basin[J]. Coal Geology & Exploration,2019,47(4):76-81.
[11] 陈振宏,王一兵,孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报,2009,34(2):229-232. CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influence sand effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229-232.
[12] 孟召平,刘翠丽,纪懿明. 煤层气/页岩气开发地质条件及其对比分析[J]. 煤炭学报,2013,38(5):728-736. MENG Zhaoping,LIU Cuili,JI Yiming. Geological conditions of coalbed methane and shale gas exploitation and their comparison analysis[J]. Journal of China Coal Society,2013,38(5):728-736.
[13] 叶建平,武强,王子和. 水文地质条件对煤层气赋存的控制作用[J]. 煤炭学报,2001,26(5):459-462. YE Jianping,WU Qiang,WANG Zihe. Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J]. Journal of China Coal Society,2001,26(5):459-462.
[14] 李忠城,唐书恒,王晓锋,等. 沁水盆地煤层气井产出水化学特征与产能关系研究[J]. 中国矿业大学学报,2011,40(3):424-429. LI Zhongcheng,TANG Shuheng,WANG Xiaofeng,et al. Relationship between water chemical composition and production of coalbed methane wells,Qinshui basin[J]. Journal of China University of Mining & Technology,2011,40(3):424-429.
[15] 叶建平,武强,叶贵钧,等. 沁水盆地南部煤层气成藏动力学机制研究[J]. 地质论评,2002,48(3):319-323. YE Jianping,WU Qiang,YE Guijun,et al. Research on the dynamic mechanism of coalbed methane reservoir formation in southern Qinshui basin[J]. Geological Review,2002,48(3):319-323.
[16] 李仰民,王立龙,刘国伟,等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气,2010,7(6):39-43. LI Yangmin,WANG Lilong,LIU Guowei,et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J]. China Coalbed Methane,2010,7(6):39-43.
[17] 石书灿,李玉魁,倪小明. 煤层气竖直压裂井与多分支水平井生产特征[J]. 西南石油大学学报(自然科学版),2009,31(1):48-52. SHI Shucan,LI Yukui,NI Xiaoming. The coalbed methane production in vertical fracturing wells and multiple lateral horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2009,31(1):48-52.
[18] 王成旺,冯延青,杨海星,等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探,2018,46(5):212-218. WANG Chengwang,FENG Yanqing,YANG Haixing,et al. Potential-tapping technology and its application in old CBM wells in Hancheng block of Ordos basin[J]. Coal Geology & Exploration,2018,46(5):212-218.
[19] 张娟涛,李谦定,赵俊. 油气井酸化缓蚀剂研究进展[J]. 腐蚀与防护,2014,35(06):593-597. ZHANG Juantao,LI Qianding,ZHAO Jun. Research progress of acidizing corrosion inhibitors in oil/gas well[J]. Corrosion & Protection,2014,35(6):593-597.
[20] 刘国强,张康,任晓娟,等. 煤层气井泡沫酸井筒除垢工艺及存在问题[J]. 大庆石油地质与开发,2017,36(1):170-174. LIU Guoqiang,ZHANG Kang,REN Xiaojuan,et al. Scale removing technology and existed problem for the foam acid wellbore of the CBM wells[J]. Petroleum Geology & Oilfield Development in Daqing,2017,36(1):170-174.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons