•  
  •  
 

Coal Geology & Exploration

Abstract

In order to restore the sedimentary environment of the Paleogene Yunlong Formation in the Lanping basin, inductively coupled plasma mass spectrometry(ICP-MS) was used to analyze trace elements in 13 samples of gypsum, limestone, gypsum mud, mudstone and sandstone from the Paleogene Yunlong Formation in Lanping Basin. The sedimentary environments and paleoclimate are estimated based on the spider diagram of trace elements in each lithology and the characteristics of the ratio of Cu/Zn, Sr/Cu and Sr/Ba and the content of Sr. The results show that:gypsum, limestone, gypsum mud, mudstone and sandstone are all rich in Rb, Pb, Zr; gypsum and gypsum mud were formed in the dry and hot marine salt water in an lean oxygen and weak reduction environment; sandstone and mudstone were formed in oxygen-rich oxidation environment of warm and humid continental freshwater; limestone was formed in the oxygen-rich oxidation environment of dry and hot marine saline water. Based on this, the evolution model of sedimentary environment in the study area was established and divided into two stages. The first stage was the deposition of weakly-reduced marine saltwater lake with dry climate, and gypsum, limestone and gypsum mud were deposited. The second stage was a warm and humid oxygen-rich oxidation environment, where sandstone and mudstone were deposited. This change in sedimentary environment is closely related to the cyclical changes of the climate and environment in the Yunlong period, also provides a basis for the exploration of mineral resources in the basin.

Keywords

geochemistry, mudstone, gypsum, the ancient environment, paleoclimate, Paleogene Yunlong Formation, Lanping basin

DOI

10.3969/j.issn.1001-1986.2020.04.016

Reference

[1] 李英娇,阳伟,邵龙义,等. 四川盐源晚三叠世煤系沉积环境与层序地层[J]. 煤田地质与勘探,2014,42(2):1-8. LI Yingjiao,YANG Wei,SHAO Longyi,et al. Sedimentary environments and sequence stratigraphy of Late Triassic coal-bearing strata in Yanyuan area,Sichuan Province[J]. Coal Geology & Exploration,2014,42(2):1-8.

[2] 庞军刚,李文厚,郭艳琴,等. 陕北子洲地区二叠纪山西组沉积环境[J]. 煤田地质与勘探,2006,34(5):5-8. PANG Jungang,LI Wenhou,GUO Yanqin,et al. Sedimentary environment of Permian Shanxi Formation in Zizhou region,northern Shaanxi[J]. Coal Geology & Exploration,2006,34(5):5-8.

[3] 王海军,马良. 陕北侏罗纪煤田三角洲平原沉积环境及其岩石力学特征[J]. 煤田地质与勘探,2019,47(3):61-69. WANG Haijun,MA Liang. Study on sediment environment and rock mechanics characteristics of the delta plain of Jurassic coalfield in northern Shaanxi[J]. Coal Geology & Exploration,2019,47(3):61-69.

[4] 王海军. 永陇矿区LYL井田2号煤层顶板沉积环境及其稳定性评价[J]. 煤田地质与勘探,2016,44(6):38-44. WANG Haijun. Sedimentary environment and stability evaluation of seam roof of No.2 seam in LYL coal mine of Yonglong coal field[J]. Coal Geology & Exploration,2016,44(6):38-44.

[5] 林中月,刘亢,魏迎春. 沁水盆地中北部石炭-二叠纪煤系构造演化特征[J]. 煤田地质与勘探,2020,48(2):85-91. LIN Zhongyue,LIU Kang,WEI Yingchun. Characteristics of tectonic evolution of Carboniferous-Permian coal measures in the north-central Qinshui basin[J]. Coal Geology & Exploration,2020,48(2):85-91.

[6] 鲁静,张凤海,杨敏芳,等. 模式化煤系露头剖面沉积环境分析方法[J]. 煤田地质与勘探,2018,46(2):40-48. LU Jing,ZHANG Fenghai,YANG Minfang,et al. Pattern analysis method of depositional environment from outcrop sections in coal measures[J]. Coal Geology & Exploration,2018,46(2):40-48.

[7] 余烨,张昌民,张尚锋,等. 惠州凹陷HZ21钻孔珠江组地球化学特征及其沉积环境[J]. 煤田地质与勘探,2012,40(3):6-12. YU Ye,ZHANG Changmin,ZHANG Shangfeng,et al. Geochemical characteristics and sedimentary environments of the Zhujiang Formation in well HZ21 at Huizhou depression[J]. Coal Geology & Exploration,2012,40(3):6-12.

[8] 高德燚,平文文,胡宝林,等. 淮南煤田山西组泥页岩微量元素地球化学特征及其意义[J]. 煤田地质与勘探,2017,45(2):14-21. GAO Deyi,PING Wenwen,HU Baolin,et al. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan coalfield and its significance[J]. Coal Geology & Exploration,2017,45(2):14-21.

[9] 彭立才,韩德馨,周家驹. 柴达木冷科1井不同沉积环境元素地球化学特征[J]. 煤田地质与勘探,2001,29(6):1-3. PENG Licai,HAN Dexin,ZHOU Jiaju. Element geochemistry characteristics of different sedimentary environments of Lengke No.1,Qaidam basin[J]. Coal Geology & Exploration,2001,29(6):1-3.

[10] 宋立军,李增学,吴冲龙,等. 安徽淮北煤田二叠系沉积环境与聚煤规律分析[J]. 煤田地质与勘探,2004,32(5):1-3. SONG Lijun,LI Zengxue,WU Chonglong,et al. Analysis of Permian sedimentary environment and regularities of coal accumulation,Huaibei coalfield,Anhui Province[J]. Coal Geology & Exploration,2004,32(5):1-3.

[11] 高建华. 滇西金顶铅锌矿床和蒸发岩建造成因关系的初步探讨[J]. 地球科学:中国地质大学学报,1989,14(5):513-522. GAO Jianhua. The preliminary study of genetic relationship between the Evaporite Formation and lead-zinc deposit of Jinding in west Yunnan Province,China[J]. Earth Science:Journal of China University of Geosciences,1989,14(5):513-522.

[12] 王安建,曹殿华,高兰,等. 论云南兰坪金顶超大型铅锌矿床的成因[J]. 地质学报,2009,83(1):43-54. WANG Anjian,CAO Dianhua,GAO Lan,et al. A probe into the genesis of Jinding super-large lead-zinc ore deposit[J]. Acta Geologica Sinica,2009,83(1):43-54.

[13] 朱志军,姜勇彪,郭福生,等. 兰坪盆地古近纪沉积相类型及沉积环境演化[J]. 岩石矿物学杂志,2011,30(3):409-418. ZHU Zhijun,JIANG Yongbiao,GUO Fusheng,et al. Palaeogene sedimentary facies types and sedimentary environment evolution in Lanping basin[J]. Acta Petrologica et Mineralogica,2011,30(3):409-418.

[14] 董帅. 兰坪金顶铅锌矿区盐丘构造发育特征及形成机制[D]. 昆明:昆明理工大学,2012. DONG Shuai. Structural development characteristics and formation mechanism of salt mounds in Lanping Jinding Pb-Zn mining area[D]. Kunming:Kunming University of Science and Technology,2012.

[15] 李彬,薛传东,董帅. 兰坪金顶铅锌矿床膏盐与成矿关系初探[J]. 科学技术与工程,2012,12(20):4880-4883. LI Bin,XUE Chuandong,DONG Shuai. The preliminary study of gypsum and mineralization of Jinding Pb-Zn deposits in Lanping[J]. Science Technology and Engineering,2012,12(20):4880-4883.

[16] 牟传龙,王剑,余谦,等. 兰坪中新生代沉积盆地演化[J]. 矿物岩石,1999,19(3):30-36. MOU Chuanlong,WANG Jian,YU Qian,et al. The evolution of the sedimentary basin in Lanping area during Mesozoic-Cenozoic[J]. Journal of Mineralogy and Petrology,1999,19(3):30-36.

[17] 张治波,朱志军,王文锋,等. 滇西兰坪盆地中-新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版),2019,49(2):356-379. ZHANG Zhibo,ZHU Zhijun,WANG Wenfeng,et al. Geochemical characteristics and formation environment of elements of Mesozoic and Cenozoic Evaporative rocks in Lanping basin,western Yunnan[J]. Journal of Jilin University(Earth Science Edition),2019,49(2):356-379.

[18] 罗君烈,杨友华,赵准,等. 滇西特提斯的演化及主要金属矿床的成矿作用[M]. 北京:地质出版社,1994. LUO Junlie,YANG Youhua,ZHAO Zhun,et al. The evolution of the western Tethys and the mineralization of major metal deposits[M]. Beijing:Geological Publishing House,1994.

[19] 王义昭,李兴林,段丽兰,等. 三江地区南段大地构造与成矿[M]. 北京:地质出版社,2000. WANG Yizhao,LI Xinglin,DUAN Lilan,et al. The tectonic and mineralization of the southern section of the Sanjiang area[M]. Beijing:Geological Publishing House,2000.

[20] 帅开业. 云南中、新生代地质构造演化与蒸发岩建造[J]. 现代地质,1987,1(2):207-229. SHUAI Kaiye. Geologic-tectonic evolution and evaporite formation of Mesozoic-Cenozoic era in Yunnan[J]. Geoscience,1987,1(2):207-229.

[21] 张治波. 兰坪盆地蒸发岩的地球化学特征及其与金属成矿关系探讨[D]. 南昌:东华理工大学,2018. ZHANG Zhibo. Geochemical characteristics of evaporates and its relation to metallogenesis in Lanping basin[D]. Nanchang:East China University of Technology,2018.

[22] 曲一华,袁品泉,帅开业,等. 兰坪-思茅盆地钾盐成矿规律及预测[M]. 北京:地质出版社,1998. QU Yihua,YUAN Pinquan,SHUAI Kaiye,et al. Metallogenic regularity and prediction of potassium salt in Lanping-Simao basin[M]. Beijing:Geological Publishing House,1998.

[23] 郭福祥. 滇西兰坪思茅地区晚白垩世至早第三纪的成盐带和成盐期[J]. 地质科学,1986(2):161-169. GUO Fuxiang. Three salt-bearing belts and three salt-genesis periods from the Late Cretaceous to the Eocene in Lanping-Simao region,western Yunnan[J]. Scientia Geologica Sinica,1986(2):161-169.

[24] 刘腾. 云南金顶铅锌矿床蒸发岩发育特征及其金属成矿意义研究[D]. 南昌:东华理工大学,2016. LIU Teng. The development characteristics of evaporate and its metallogenic significance in Jinding lead-zinc deposit,Yunnan[D]. Nanchang:East China University of Technology,2016.

[25] 刘成林,焦鹏程,王弭力,等. 新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义[J]. 矿床地质,2003,22(4):386-392. LIU Chenglin,JIAO Pengcheng,WANG Mili,et al. Ascending brine fluids in quaternary salty lake of Lop Nur in Xinjiang and their significance in potash formation[J]. Mineral Deposits,2003,22(4):386-392.

[26] 沈立建,刘成林,王立成. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义[J]. 地质学报,2015,89(11):2036-2045. SHEN Lijian,LIU Chenglin,WANG Licheng. Geochemical characteristics of rare earths and trace elements,of the Upper Yunlong Formation in Lanping basin,Yunnan and its environments significance[J]. Acta Geologica Sinica,2015,89(11):2036-2045.

[27] 朱志军,郭福生,刘腾,等. 云南兰坪盆地古近系细碎屑岩地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),2015,45(6):1631-1641. ZHU Zhijun,GUO Fusheng,LIU Teng,et al. Geochemical characteristics of Paleogene fine clastic rock and its geological significance in Lanping basin,Yunnan[J]. Journal of Jilin University(Earth Science Edition),2015,45(6):1631-1641.

[28] 田景春,张翔. 沉积地球化学[M]. 北京:地质出版社,2016. TIAN Jingchun,ZHANG Xiang. Sedimentary geochemistry[M]. Beijing:Geological Publishing House,2016.

[29] 王益友,吴萍. 江浙海岸带沉积物的地球化学标志[J]. 同济大学学报,1983(4):79-87. WANG Yiyou,WU Ping. Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang Provinces[J]. Journal of Tongji University,1983(4):79-87.

[30] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310. LIU Gang,ZHOU Dongsheng. Application of microelements analysis in identifying sedimentary environment:Taking Qianjiang Formation in the Jianghan basin as an example[J]. Petroleum Geology & Experiment,2007,29(3):307-310.

[31] 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3):27-34. WANG Shufang,DONG Dazhong,WANG Yuman,et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan basin[J]. Marine Origin Petroleum Geology,2014,19(3):27-34.

[32] WIGNALL P B. Black shales[M]. Oxford:Clarendon Press,1994:46.

[33] 王敏芳,焦养泉,王正海,等. 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,2005,26(6):719-722. WANG Minfang,JIAO Yangquan,WANG Zhenghai,et al. Recovery paleosalinity in sedimentary environment:An example of mudstone in Shuixigou Group,southwestern margin of Turpan-Hami basin[J]. Xinjiang Petroleum Geology,2005,26(6):719-722.

[34] 许璟,蒲仁海,杨林,等. 塔里木盆地石炭系泥岩沉积时的古盐度分析[J]. 沉积学报,2010,28(3):509-517. XU Jing,PU Renhai,YANG Lin,et al. The palaeosalinity analysis of Carboniferous mudstone,Tarim basin[J]. Acta Sedimentologica Sinica,2010,28(3):509-517.

[35] 范昱,陈洪德,侯中健,等. 云南兰坪盆地古近系构造-层序岩相古地理特征分析[J]. 地层学杂志,2010,34(4):381-388. FAN Yu,CHEN Hongde,HOU Zhongjian,et al. The Paleogene tectonic sequence analysis based the characteristics of lithofacies and palaeogeography in Lanping basin,Yunnan[J]. Journal of Stratigraphy,2010,34(4):381-388.

[36] 朱志军,郭福生,宋玉财,等. 滇西兰坪盆地古近系构造-沉积演化与成矿关系[J]. 沉积学报,2014,32(6):997-1006. ZHU Zhijun,GUO Fusheng,SONG Yucai,et al. The relationship between Paleogene tectonic-sedimentary evolution and mineralization of Lanping basin in the western Yunnan[J]. Acta Sedimentologica Sinica,2014,32(6):997-1006.

[37] 沈立建,刘成林,王立成. 云南兰坪盆地古近系云龙组上段沉积环境研究:来自碳、氧同位素的证据[J]. 地球学报,2016,37(3):301-306. SHEN Lijian,LIU Chenglin,WANG Licheng. A study of the sedimentary environment of the Upper Member of the Paleogene Yunlong Formation in Lanping basin,Yunnan Province:Evidence from carbon and oxygen stable isotopes[J]. Acta Geoscientica Sinica,2016,37(3):301-306.

[38] 王苏民,窦鸿身,陈克造,等. 中国湖泊志[M]. 北京:科学出版社,1998. WANG Sumin,DOU Hongshen,CHEN Kezao,et al. Chinese journal of lakes[M]. Beijing:Science Press,1998.

[39] KRAUS M J,RIGGINS S. Transient drying during the Paleocene-Eocene thermal maximum(PETM):Analysis of Paleosols in the Bighorn basin,Wyoming[J]. Palaeogeography,Palaeoclima­tology,Palaeoecology,2007:245(3):444-461.

[40] TIPPLE B J,PAGANI M,KRISHNAN S,et al. Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene-Eocene thermal maximum(PETM)[J]. Earth and Planetary Science Letters,2011,311(1):82-92.

[41] YAMAGUCHI T,NORRIS R D,BORNEMANN A. Dwarfing of ostracodes during the Paleocene-Eocene thermal maximum at DSDP Site 401(Bay of Biscay,North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem[J]. Palaeogeography,Palaeoclimatology,Palaeoe­cology,2012,346:130-144.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.