•  
  •  
 

Coal Geology & Exploration

Abstract

In order to analyze deeply the genesis and tectonic control on water of the macrostructures of the fourth stage of the Huainan North China-type coalfield, the forms of folds and faults of the Huainan coalfield were used to verify and compare the North China craton geohistory, stratigraphy, and regional tectonics. Quantitative evaluation of the impact of mining area 8 on production mines was conducted. The results show that the Huainan coalfield was formed by the superposition of the Indosinian, Yanshan and Himalayan movements. The Indosinian movement formed the Huainan coalfield at near-east-west tectonic line(body) in the first stage, and the Huainan coalfield was formed at near-north-south tectonic line(body) in the second stage. After the tributary movement, the main tectonic pattern of the Huainan coalfield had basically taken shape. The third stage of the Yanshan movement and the fourth stage of the Himalayan movement had no significant effect on the large tectonic pattern of the Huainan coalfield. According to the movement time and the cutting relationship of the formed structures, the second stage structures cut the first stage structure. The near- north-south faults(cracks) cut the near-east-west faults(cracks), and the third stage magmatic rocks all crossed the first and the second stage fault zones(groups), there was no cutting relationship, and no faults(fractures) developed into the Cenozoic strata. The first stage to fourth stage structures had a significant difference in the degree of impact on the water hazards in each mine. Among them, the Gubei coalmine is the most effected. Huainan coalfield was a participant and witness of global tectonic events after coal accumulation in the Carboniferous-Permian, the staged tectonic feature of the macrostructures in Huainan coalfield provides direct evidence for study on the North China craton and the surrounding areas.

Keywords

tectonic control on water, genesis, North China craton, Yanshan movement, Himalayan movement, Huainan coalfield

DOI

10.3969/j.issn.1001-1986.2020.04.015

Reference

[1] 淮南矿务局钻探队. 安徽省淮南矿区谢家集-新庄孜区段矿井深部(-662~-1000 m)地质勘探报告(精查)[R]. 淮南:淮南矿务局,1982. Drilling Team of Huainan Mining Bureau. Geological exploration report on the deep part(-662~-1000 m) of Xiejiaji-Xinzhuangzi section of Huainan mining area in Anhui Province[R]. Huainan:Huainan Mining Bureau,1982.

[2] 翟明国. 华北克拉通构造演化[J]. 地质力学学报,2019,25(5):722-745. ZHAI Mingguo. Tectonic evolution of the North China craton[J]. Journal of Geomechanics,2019,25(5):722-745.

[3] 赵宗溥. "印支运动"五十周年回顾[J]. 地质科学,1986(1):7-15. ZHAO Zongpu. Review of the 50th anniversary of the Indosinian movement[J]. Scientia Geosciences Sinica,1986(1):7-15.

[4] 任纪舜. 读《中国主要地质构造单位》:中国大地构造的经典著作:纪念黄汲清先生诞辰100周年[J]. 地质论评,2004,50(3):235-239. REN Jishun. Comments on major tectonic forms of China (Huang T K,1945):Classical work on tectonics of China:In commemoration of the 100th anniversary of prof. Huang Jiqing's birth[J]. Geological Review,2004,50(3):235-239.

[5] 李勇,钟建华,温志峰,等. 印支运动对济阳坳陷构造形态形成演化的影响[J]. 地质论评,2006,52(3),321-330. LI Yong,ZHONG Jianhua,WEN Zhifeng,et al. Effects of Indosinian movements on tectonic formation and evolution,Jiyang depression[J]. Geological Review,2006,52(3):321-330.

[6] 马寅生,崔盛芹,曾庆利,等.燕山地区燕山期的挤压与伸展作用[J]. 地质通报,2002,21(4):218-223. MA Yinsheng,CUI Shengqin,ZENG Qingli,et al. Yanshanian compression and extension in the Yanshan area[J]. Geological Bulletin of China,2002,21(4):218-223.

[7] 淮南煤矿史编委会. 淮南煤矿史[M]. 合肥:时代出版传媒股份有限公司,2018. Huainan Coal Mine History editorial Board. History of Huainan coal mine[M]. Hefei:Time Publishing and Media Co.,Ltd.,2018.

[8] 宋传中,朱光,刘国生,等. 淮南煤田的构造厘定及动力学控制[J]. 煤田地质与勘探,2005,33(1):11-15. SONG Chuanzhong,ZHU Guang,LIU Guosheng,et al. Identificating of structure and its dynamics control of Huainan coalfield[J]. Coal Geology & Exploration,2005,33(1):11-15.

[9] 杨为民,黄文辉. 安徽淮南煤田南北缘断裂带构造地球化学特征[J]. 现代地质,2002,16(3):251-256. YANG Weimin,HUANG Wenhui. The characteristics of tectonic geochemistry of the fault zones on the southern and northern edges of Huainan coalfield,Anhui Province[J]. Modern Geology,2002,16(3):251-256.

[10] 姜波,王桂樑,高元,等. 安徽省淮南煤田颍凤区推覆构造微观变形特征及其形成机制[J]. 中国区域地质,1992(1):60-67. JIANG Bo,WANG GuiLiang,GAO Yuan,et al. Characteristics of microscopic deformation and mechanism of the Fengyang-Fengtai nappe in the Yingshan-Fengtai area,Huainan coalfield,Anhui Province[J]. Regional Geology of China,1992(1):60-67.

[11] 桂和荣,宋晓梅,彭子成. 淮南煤田阜凤推覆构造带水文地质特征研究[J]. 地球学报,2005,26(2):169-172. GUI Herong,SONG Xiaomei,PENG Zicheng. The transmissivity of Fufeng nappe structural belt in Huainan coalfield[J]. Acta Geologica Sinica,2005,26(2):169-172.

[12] 刘丙祥,刘春平,孙明聪,等. 淮南煤田朱集井田岩浆侵入特征研究[J]. 中国煤炭地质,2010,22(3):13-16. LIU Bingxiang,LIU Chunping,SUN Mingcong,et al. A study on magmatic intrusion features in Zhuji minefield,Huainan coalfield[J]. China Coal Geology,2010,22(3):13-16.

[13] 许光泉,孙丰英,李佩全,等. 安徽淮南煤田"陷落柱"成因模式及其综合预测研究[J]. 皖西学院学报,2015,31(5):11-16. XU Guangquan,SUN Fengying,LI Peiquan,et al. The formed model of "karst collapse column" and its comprehensive forecast method in Huainan coalfield[J]. Journal of West Anhui University,2015,31(5):11-16.

[14] 郑竹艳,许光泉,杨婷婷,等. 淮南顾北矿F104断层两侧岩溶水化学形成机制及导隔水性评价[J]. 煤田地质与勘探,2020,48(1):129-137. ZHENG Zhuyan,XU Guangquan,YANG Tingting,et al. Hydrochemical formation mechanism and transmissivity-impermeability analysis of karst groundwater on both sides of fault F104 in Gubei coal mine in Huainan[J]. Coal Geology & Exploration,2020,48(1),129-137.

[15] 董鹏,蔡海兵. 淮南矿区地应力场特征的统计分析[J].煤炭科技,2015(3):98-101. DONG Peng,CAI Haibing. Statistical analysis of the characteristics of geostress field in Huainan mining area[J]. Coal Science & Technology Magazine,2015(3):98-101.

[16] 张春光,李松营,杨培,等,陕渑煤田构造控水机理[J]. 煤田地质与勘探,2012,40(5):42-46. ZHANG Chunguang,LI Songying,YANG Pei,et al. Structural control mechanism on groundwater in Shanmian coalfield[J]. Coal Geology & Exploration,2012,40(5):42-46.

[17] 王志荣,胡社荣,陈玲霞. 河南省煤矿水害的构造控制作用研究[J]. 煤田地质与勘探,2004,32(6):45-48. WANG Zhirong,HU Sherong,CHEN Lingxia. Tectonic control on water hazards of coal mine in Henan Province[J]. Coal Geology & Exploration,2004,32(6):45-48.

[18] 李梦婵,刘国生,陈俊,等. 蚌埠隆起区东部变质块体的P-T条件及锆石年代学研究[J]. 地质论评,2017,63(2):311-325. LI Mengchan,LIU Guosheng,CHEN Jun,et al. Study of P-T condition and LA-ICP-MS zircon U-Pb chronology on metamorphic terrane of east Bengbu uplift area[J]. Geological Review,2017,63(2):311-325.

[19] 李法浩,解国爱,田荣松,等. 华北板块东南缘徐淮推覆-褶皱带的物理模拟[J]. 地质通报,2018,37(6):1087-1100. LI Fahao,JIE Guoai,TIAN Rongsong,et al. Physical modeling of Xu-Huai thrust-fold belt on the southeastern margin of North China block[J]. Geological Bulletin,2018,37(6):1087-1100.

[20] 万桂梅,汤良杰,金文正,等. 郯庐断裂带研究进展及存在问题探讨[J]. 地质论评,2009,55(2):251-259. WAN Guimei,TANG Liangjie,JIN Wenzheng,et al. Progresses and problems in the study of Tancheng-Lujiang fault zone[J]. Geological Review,2009,55(2):251-259.

[21] 侯明金,MERCIER J,VERGELY P,等. 郯庐断裂带的两大发展阶段:广义的逆冲推覆断裂带和狭义的平移断裂带[J]. 中国地质,2006,33(6):1267-1275. HOU Mingjin,MERCIER J,VERGELY P,et al. Two development stages of the Tanlu fault zone:The stages of the overthrust fault zone sensu lato and the wrench fault zone sensu stricto[J]. Geology of China,2006,33(6):1267-1275.

[22] 秦晶晶,石金虎,张毅,等. 郯庐断裂带合肥段五河:合肥断裂构造特征[J]. 地球物理学报,2018,61(11):4475-4485. QIN Jingjing,SHI Jinhu,ZHANG Yi,et al. Structural characteristics of the Wuhe-Hefei fault on the Hefei segment of the Tanlu fault zone[J]. Journal of Geophysics,2018,61(11):4475-4485.

[23] 张交东,王登稳,刘德良,等. 合肥盆地安参1超深井钻遇的基底时代问题讨论[J]. 地质论评,2008,54(4):433-438. ZHANG Jiaodong,WANG Dengwen,LIU Deliang,et al. A discussion on the basement time in the deep drill Ancan-1,Hefei basin,southern margin of the North China plate[J]. Geological Review,2008,54(4):433-438.

[24] 苗慧心,张交东,周新桂,等. 合肥盆地安参1井前侏罗纪基底地层的孢粉组合特征与时代归属[J]. 地质学报,2018,92(3):466-481. MIAO Huixin,ZHANG Jiaodong,ZHOU Xingui,et al. Characteristics and age assignment of the sporo-pollen assemblages of Pre-Jurassic basement strata in well Ancan-1,Hefei basin[J]. Acta Geologica Sinica,2018,92(3):466-481.

[25] 苗林,刘桂建,吴盾,等. 淮南煤田潘三井田西部岩浆岩侵入年代确定与意义[J]. 中国煤炭地质,2012,24(11):4-6. MIAO Lin,LIU Guijian,WU Dun,et al. Magmatic intrusive age determination and its significance in western Panji No.3 minefield,Huainan coalfield[J]. China Coal Geology,2012,24(11):4-6.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.