•  
  •  
 

Coal Geology & Exploration

Abstract

Coal is a climate-sensitive sediment that contains abundant paleoclimate information. In order to find out the paleoclimate information contained in the coal seam and the evolution of its controlling factors, the No.4 thick coal seam in the first member of Yan’an Formation in the south of Ordos basin was studied. Based on the intensive sampling of the thick coal seam, the information of organic macerals, major and trace elements, and stable carbon isotopes of organic matter were systematically tested. By using the macerals, characteristic elements and carbon isotopes of coal and rocks, four cycles of paleoclimate with alternation of warm-wet and dry-heat have been identified in the thick coal seam. The results of this study are similar to those of the previous studies in the same seam in the adjacent area, and the paleoclimatic cycle identified by the method of paleovegetation content coefficient was very consistent. Based on the comparative analysis of the Milankovitch cycle information which controlled the climate evolution in the thick coal seam, it is considered that the development and evolution of the paleoclimate cycle in the thick coal seam were mainly controlled by the long period of eccentricity in the orbit parameters of the celestial body. The results confirm the reliability of the method and elucidate the genetic mechanism of paleoclimate cycloaddition.

Keywords

ultra thick coal seam, paleoclimate cycle, Milankovitch cycle, controlling factor, eccentricity, Binchang mining area

DOI

10.3969/j.issn.1001-1986.2020.03.008

Reference

[1] SUTTNER L J,DUTTA P K. Alluvial sandstone composition and palaeoclimate. Framework mineralogy[J]. Journal of Sedimentary Petrology,1986,56:329-345.

[2] HIERONYMUS B,KOTSCHOUBEY B,BOULEGUE J. Gallium behavior in some contrasting lateritic profiles from Cameroon and Brazil[J]. Journal of Geochemical Exploration,2001,72(2):147-163.

[3] BECKMANN B,FLÖGEL S,HOFMANN P,et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature,2005,437(7056):241-244.

[4] RATCLIFFE K T,WRIGHT A M,HALLSWORTH C,et al. Alternative correlation techniques in the petroleum industry:An example from the(Lower Cretaceous) Basal Quartz,southern Alberta,Bullet[J]. American Association of Petroleum Geologists Bulletin,2004,88(10):1419-1432.

[5] ROY D K,ROSER B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir basin,Bangladesh[J]. Gondwana Research,2013,23(3):1163-1171.

[6] 武子玉,周永昶. 吉南地区不同沉积环境原煤微量元素地球化学特征[J]. 岩石矿物学杂志,2004,23(4):361-364. WU Ziyu,ZHOU Yongchang. Microelements geochemical characteristics of coals in different sedimentary environments of southern Jilin Province[J]. Acta Petrologica Et Mineralogica,2004,23(4):361-364.

[7] YANDOKA SARKI B M,ABDULLAH H W,ABUBAKAR M B,et al. Geochemistry of the Cretaceous coals from Lamja Formation,Yola sub-basin,northern Benue trough,NE Nigeria:Implications for paleoenvironment,paleoclimate and tectonic setting[J]. Journal of African Earth Sciences,2015,104:56-70.

[8] 周春光,杨起,潘治贵,等. 从煤岩成分看延安期古气候变迁[J]. 中国煤田地质,1996,8(4):12-14. ZHOU Chunguang,YANG Qi,PAN Zhigui,et al. Paleo-climate evolution of Yan'an stage inferred from petrographic composition of coal[J]. Coal Geology of China,1996,8(4):12-14.

[9] 阎存凤,袁剑英,赵应成,等. 蒙、甘、青地区侏罗纪孢粉组合序列及古气候[J]. 天然气地球科学,2006,17(5):634-639. YAN Cunfeng,YUAN Jianying,ZHAO Yingcheng,et al. Jurassic spora-pollen assemblages and paleoclimate in Inner Mongolia,Gansu,Qinghai,China[J]. Natural Gas Geoscience,2006,17(5):634-639.

[10] 庄军,吴景钧. 鄂尔多斯盆地南部早中侏罗世聚煤特征与煤的综合利用[M]. 北京:地质出版社,1996. ZHUANG Jun,WU Jingjun. Comprehensive research on Lower and Middle Jurassic coal-accumulation and Multi-utilization of coal resources in southern part of Ordos basin[M]. Beijing:Geological Publishing House,1996.

[11] BIRGENHEIER L P,FRANK T D,FIELDING C R,et al. Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the Late Palaeozoic Ice Age[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,286(3/4):178-193.

[12] RETALLACK G J,SHELDON N D,CARR P F,et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction[J]. Palaeogeography,Palaeoclima­tology,Palaeoecology,2011,308(1/2):233-251.

[13] LÓPEZ-DÍAS V,URBANCZYK J,BLANCO C G,et al. Biomarkers as paleoclimate proxies in peatlands in coastal high plains in Asturias,N Spain[J]. International Journal of Coal Geology,2013,116/117:270-280.

[14] IZART A,SUAREZ-RUIZ I,BAILEY J. Paleoclimate reconstruction from petrography and biomarker geochemistry from Permian humic coals in Sydney coal basin(Australia)[J]. International Journal of Coal Geology,2015,138:145-157.

[15] BECHTEL A,GRUBER W,SACHSENHOFER R F,et al. Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps(Austria)[J]. Organic Geochemistry,2001,32(11):1289-1310.

[16] 鲁静,邵龙义,王占刚,等. 柴北缘侏罗纪煤层有机碳同位素组成与古气候[J]. 中国矿业大学学报,2014,43(4):612-618. LU Jing,SHAO Longyi,WANG Zhangang,et al. Organic carbon isotope composition and paleoclimatic evolution of Jurassic coal seam in the northern Qaidam basin[J]. Journal of China University of Mining & Technology,2014,43(4):612-618.

[17] 王双明,张玉平. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律[J]. 地学前缘,1999,6(增刊1):147-155. WANG Shuangming,ZHANG Yuping. Study on the formation,evolution and coal-accumulating regularity of the Jurassic Ordos basin[J]. Earth Science Frontiers,1999,6(S1):147-155.

[18] 苗淑娟. 内蒙古固阳含煤层中生代地层及古生物(九):孢子花粉[M]. 北京:地质出版社,1982. MIAO Shujuan. Mesozoic strata and paleontology of Guyang coal bearing seam, Inner Mongolia(九):Spores pollen[M]. Beijing:Geological Publishing House,1982.

[19] HARRIS T M. A Litassic-Rhaetic flora in south Wales[J]. Proceedings of the Royal Society of London,Series B, Biological Sciences,1957,147(928):289-308.

[20] VAKHRAMEEV V A. Range and paleontology of Mesozoic conlfers,Cheirilepidiaceae[J]. Paleontological Journal,1970,70(1):19-34.

[21] 段宗怀. Classopollis花粉及其古气候意义[J]. 煤田地质与勘探,1991,19(6):14-21. DUAN Zonghuai. Classopollis pollen and its paleoclimate meaning[J]. Coal Geology & Exploration,1991,19(6):14-21.

[22] 钱丽君,吴景钧. 陕西北部侏罗纪含煤地层及聚煤特征[M]. 西安:西北大学出版社,1987. QIAN Lijun,WU Jingjun. Jurassic coal-bearing strata and accumulation from northern Shaanxi[M]. Xi'an:Northwest University Press,1987.

[23] 宋孝忠. 煤岩显微图象假边界对显微组分组自动识别的影响[J]. 煤田地质与勘探,2019,47(6):45-50. SONG Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration,2019,47(6):45-50.

[24] 杨起,韩德馨. 中国煤田地质学[M]. 北京:煤炭工业出版社,1979. YANG Qi,HAN Dexin. Coalfield geology of China[M]. Beijing:China Coal Industry Publishing House,1979.

[25] 王东东,侯懿隽,刘海燕,等. 巨厚煤层沉积间断面的综合判别方法与成因模式[J]. 煤炭科学技术,2018,46(2):56-64. WANG Dongdong,HOU Yijun,LIU Haiyan,et al. Comprehensive identification method of sedimentary hiatal surface in ultra thick coal seam and its genetic mode[J]. Coal Science and Technology,2018,46(2):56-64.

[26] STACH E. Stach's textbook of coal petrology,third revision[M]. Beijing:China Coal Industry Publishing House,1990.

[27] 方爱民,雷家锦,金奎励,等. 山西西山煤田7号煤层煤相研究[J]. 中国煤田地质,2003,15(5):12-16. FANG Aimin,LEI Jiajin,JIN Kuili,et al. An anthracographic study on No.7 coal in Xishan coalfield,Shanxi[J]. Coal Geology of China,2003,15(5):12-16.

[28] 李清. 山西延川南煤层气田2号煤层煤相研究:煤层气开发选区意义[J]. 石油实验地质,2014,36(2):245-248. LI Qing. Coal facies of No.2 coal in Yanchuannan coal field of Shanxi:Significance for constituencies of coalbed methane exploitation[J]. Petroleum Geology & Experiment,2014,36(2):245-248.

[29] 王德祖. 华亭矿区5号煤层煤相研究[J]. 中国煤田地质,2005,17(4):6-8. WNAG Dezu. A study on 5 coal seam facies,Huating mining area[J]. Coal Geology of China,2005,17(4):6-8.

[30] 腾格尔,刘文汇,徐永昌,等. 缺氧环境及地球化学判识标志的探讨:以鄂尔多斯盆地为例[J]. 沉积学报,2004,22(2):365-372. Tonger,LIU Wenhui,XU Yongchang,et al. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica,2004,22(2):365-372.

[31] 何刚,李双应. 晚古生代全球古气候特征及其研究方法[J]. 安徽地质,2006,16(4):241-246. HE Gang,LI Shuangying. Global palaeoclimate characteristics and research technique of Late Palaeozoic[J]. Geology of Anhui,2006,16(4):241-246.

[32] 邵龙义,JONES T P. 桂中晚二叠世碳酸盐岩碳同位素的地层学意义[J]. 沉积学报,1999,17(1):84-88. SHAO Longyi,JONES T P. Carbon isotopes and the stratigraphical implication of the Late Permian carbonates in central Guangxi[J]. Acta Sedimentologica Sinica,1999,17(1):84-88.

[33] 李相博,陈践发,张平中. 青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J]. 沉积学报,1999,17(2):325-329. LI Xiangbo,CHEN Jianfa,ZHANG Pingzhong. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet plateau(NE) and its climatic information[J]. Acta Sedimentologica Sinica,1999,17(2):325-329.

[34] 邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报,1994,23(1):39-45. SHAO Longyi. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc.[J]. Journal of China University of Mining & Technology,1994,23(1):39-45.

[35] 邵龙义,窦建伟,张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学,1996,25(6):575-581. SHAO Longyi,DOU Jianwei,ZHANG Pengfei. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica,1996,25(6):575-581.

[36] 王谋,李勇,黄润秋,等. 青藏高原腹地植物碳同位素组成对环境条件的响应[J]. 山地学报,2005,23(3):274-279. WANG Mou,LI Yong,HUANG Runqiu,et al. The responses of floral carbonate isotopic compositions of the central Qinghai-Tibet plateau plants to environmental conditions[J]. Journal of Mountain Science,2005,23(3):274-279.

[37] 尹锦涛,吴颖,姜呈馥,等. 子长-延川矿权区晚三叠世聚煤环境及聚煤规律[J]. 煤田地质与勘探,2016,44(4):8-13. YIN Jintao,WU Ying,JIANG Chengfu,et al. Late Triassic coal-forming environment and coal-accumulating law in Zichang-Yanchuan mining area[J]. Coal Geology & Exploration,2016,44(4):8-13.

[38] 鲁静,杨敏芳,邵龙义,等. 陆相盆地古气候变化与环境演化、聚煤作用[J]. 煤炭学报,2016,41(7):1788-1797. LU Jing,YANG Minfang,SHAO Longyi,et al. Paleoclimate change and sedimentary environment evolution,coal accumulation:A Middle Jurassic terrestrial[J]. Journal of China Coal Society,2016,41(7):1788-1797.

[39] 陈海霞. 川西雅安地区白垩纪古环境古气候研究[D]. 成都:成都理工大学,2009. CHEN Haixia. Research of paleoenvironment and paleoclimate of Cretaceous in Ya'an area, western Sichuan basin[D]. Chengdu:Chengdu University of Technology,2009.

[40] 付亚飞,邵龙义,张亮,等. 焦作煤田石炭-二叠纪泥质岩地球化学特征及古环境意义[J]. 沉积学报,2018,36(2):415-426. FU Yafei,SHAO Longyi,ZHANG Liang,et al. Geochemical characteristics of mudstones in the Permo-Carboniferous Strata of the Jiaozuo coalfield and their paleoenvironmental significance[J]. Acta Sedimentologica Sinica,2018,36(2):415-426.

[41] 范玉海,屈红军,王辉,等. 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382-389. FAN Yuhai,QU Hongjun,WANG Hui,et al. The application of trace elements analysis to identifying sedimentary media environment:A case study of Late Triassic strata in the middle part of western Ordos basin[J]. Geology in China,2012,39(2):382-389.

[42] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414. XIONG Xiaohui,XIAO Jiafei. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405-414.

[43] 王随继,黄杏珍,妥进才,等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):65-70. WANG Suiji,HUANG Xingzhen,TUO Jincai,et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation,Biyang depression[J]. Acta Sedimentologica Sinica,1997,15(1):65-70.

[44] 薛罗. 恩平凹陷古近系烃源岩元素地球化学综合评价[D]. 武汉:中国地质大学(武汉),2013. XUE Luo. Element geochemistry evaluation of Paleogene source rocks in Enping depression[D]. Wuhan:China University of Geosciences(Wuhan),2013.

[45] 胡晓峰,刘招君,柳蓉,等. 抚顺盆地始新统计军屯组微量元素特征及油页岩的有利成矿条件[J]. 吉林大学学报(地球科学版),2012,42(增刊1):60-71. HU Xiaofeng,LIU Zhaojun,LIU Rong,et al. Trace element characteristics of Eocene Jijuntun Formation and the favorable metallogenic conditions of oil shale in Fushun basin[J]. Journal of Jilin University(Earth Science Edition),2012,42(S1):60-71.

[46] 张彬,姚益民. 利用微量元素统计分析东营凹陷新生代沙四晚期湖泊古环境[J]. 地层学杂志,2013,37(2):186-192. ZHANG Bin,YAO Yimin. Trace element and palaeoenvironmental analyses of the Cenozoic Lacustrine deposits in the Upper Es4 Submember of the Dongying basin[J]. Journal of Stratigraphy,2013,37(2):186-192.

[47] 梁文君,肖传桃,肖胜. 川西地区中二叠世-中三叠世微量、常量元素与古环境、古气候关系研究[J]. 科学技术与工程,2015,15(11):14-24. LIANG Wenjun,XIAO Chuantao,XIAO Sheng. Study on relationships between paleoenvironment,paleoclimate of Middle Permian-Middle Triassic and constant,trace elements in western Sichuan[J]. Science Technology and Engineering,2015,15(11):14-24.

[48] 杜晨,张兵,张世涛,等. 浅谈湖泊沉积环境演变中元素地球化学的应用及原理[J]. 地质与资源,2012,21(5):487-492. DU Chen,ZHANG Bing,ZHANG Shitao,et al. Application and principle of element geochemistry in the evolution of lake sedimentary environment[J]. Geology and Resources,2012,21(5):487-492.

[49] 赵锡文. 古气候学概论[M]. 北京:地质出版社,1992. ZHAO Xiwen. Introduction to paleoclimatology[M]. Beijing:Geology Publishing House,1992.

[50] LARGE D J. A 1.16 Ma record of carbon accumulation in western European peatland during the Oligocene from the Bally money lignite,northern Ireland[J]. Journal of the Geological Society,2007,164(6):1233-1240.

[51] LARGE D J,JONES T F,SOMERFIELD C,et al. High-resolution terrestrial record of orbital climate forcing in coal[J]. Geology,2003,31(4):303-306.

[52] 邵龙义,王学天,鲁静,等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报,2017,35(5):1016-1031. SHAO Longyi,WANG Xuetian,LU Jing,et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica,2017,35(5):1016-1031.

[53] WANG Dongdong,YAN Zhiming,LIU Haiyan,et al. The net primary productivity of Mid-Jurassic peatland and its control factors:Evidenced by the Ordos basin[J]. International Journal of Mining Science and Technology,2018,28(2):177-185.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.