Coal Geology & Exploration
Abstract
In area with high groundwater level in the east of China, long-time underground coal mining results in a large subsidence water area on the surface. The risk of water environment pollution in subsidence waters is increasing gradually with the influence of human activities. According to Weber-Fisher law, this paper took Panji waterlogged area of Huainan as the research object, selected the water quality evaluation indexes closely related to the water environment of the waterlogged area, analyzed the water environmental conditions of the waterlogged area in different periods, and quantitatively reflected the time and the area of the water environment quality change and potential water environment risk of the waterlogged area through the overlay and fusion of layers. The results show that the water quality of waterlogged area is not optimistic, and there is a risk of water quality deterioration. The waterlogged area presents warning conditions above middle level with the change of time from May to November. The warning areas changes in different months. Among them, the western and central part of the waterlogged area has a higher probability of occurrence of warning situation. In the future water environment management, it is needed to take targeted preventive measures for different areas during different periods to avoid the risk of water environment pollution.
Keywords
Weber-Fisher law, waterlogged area, water quality assessment, comprehensive forewarning, Panji coalfield of Huainan
DOI
10.3969/j.issn.1001-1986.2020.03.001
Recommended Citation
PEI Wenming, ZHANG Hui, JU Changhua,
et al.
(2020)
"Water environment comprehensive forewarning for waterlogged area in Huainan based on Weber-Fechner law,"
Coal Geology & Exploration: Vol. 48:
Iss.
3, Article 2.
DOI: 10.3969/j.issn.1001-1986.2020.03.001
Available at:
https://cge.researchcommons.org/journal/vol48/iss3/2
Reference
[1] 胡炳南,郭文砚. 我国采煤沉陷区现状、综合治理模式及治理建议[J]. 煤矿开采,2018,23(2):1-4. HU Bingnan,GUO Wenyan. Mining subsidence area status,syntheses governance model and governance recommendation[J]. Coal Mining Technology,2018,23(2):1-4.
[2] 段洪涛,罗菊花,曹志刚,等. 流域水环境遥感研究进展与思考[J]. 地理科学进展,2019,38(8):1182-1195. DUAN Hongtao,LUO Juhua,CAO Zhigang,et al. Progress in remote sensing of aquatic environments at the watershed scale[J]. Progress in Geography,2019,38(8):1182-1195.
[3] 陈珏. 我国水环境监测存在的问题及对策[J]. 环境与发展,2019,31(4):181-184. CHEN Jue. Problems and countermeasures of water environment monitoring in China[J]. Environment & Development,2019,31(4):181-184.
[4] 李茜,张鹏,彭福利,等. 国家水环境质量预报预警研究进展及业务发展思路[J]. 中国环境监测,2019,35(1):8-16. LI Qian,ZHANG Peng,PENG Fuli,et al. Research progress and preliminary plan of national water quality forecasting and alarming system[J]. Environmental Monitoring in China,2019,35(1):8-16.
[5] 李佳洺,余建辉,张文忠. 中国采煤沉陷区空间格局与治理模式[J]. 自然资源学报,2019,34(4):867-880. LI Jiaming,YU Jianhui,ZHANG Wenzhong. Spatial distribution and governance of coal-mine subsidence in China[J]. Journal of Natural Resources,2019,34(4):867-880.
[6] 潘仁飞. 煤矿开采生态环境综合评价及生态补偿费研究[D]. 北京:中国矿业大学,2010. PAN Renfei. Research on the synthetical assessment to eco-environment and ecological compensation of mining[D]. Beijing:China University of Mining and Technology,2010.
[7] 陈晨,李兵,徐燕飞. 平原高潜水位采煤沉陷区规划与综合利用策略:以淮南矿区为例[J]. 安徽农学通报,2019,25(16):125-126. CHEN Chen,LI Bing,XU Yanfei. Discussion on planning and comprehensive utilization strategy of coal mining subsidence area in high phreatic level in plain:Taking Huainan mining area as an example[J]. Anhui Agicultural Science Bulletin,2019,25(16):125-126.
[8] 吴建宇. 封闭式采煤沉陷积水区水环境特征及水质评价研究[D]. 淮南:安徽理工大学,2018. WU Jianyu. Study on water environmental characteristics and water quality evaluation of closed coal mining subsidence area[D]. Huainan:Anhui University of Science & Technology,2018.
[9] 张维翔. 淮南高潜水位采煤沉陷区水质特征及变化趋势[D]. 合肥:安徽大学,2019. ZHANG Weixiang. Water quality characteristics and changing trend of coal mining subsidence area with high underground water in Huainan[D]. Hefei:Anhui University,2019.
[10] 叶圆圆. 基于RS淮南采煤沉陷水域水质实时监测技术研究[D]. 淮南:安徽理工大学,2014. YE Yuanyuan. Research on real-time monitoring of water quality based on remote sensing technology[D]. Huainan:Anhui University of Science & Technology,2014.
[11] 陈晓晴. 基于GIS潘谢矿区氮磷流失特征研究:以潘集、谢桥塌陷区为例[D]. 淮南:安徽理工大学,2013. CHEN Xiaoqing. Study on the losses characteristic of nitrogen and phosphorus based on GIS in Panxie mine[D]. Huainan:Anhui University of Science & Technology,2013.
[12] PEI Wenming,YAO Suping,DONG Shaochun,et al. Using field spectral measurements to estimate chlorophyll-a in waterlogged areas of Huainan,China[J]. GIScience & Remote Sensing,2015,52(6):660-679.
[13] DRÃSLER J. An N-dimensional Weber law and the corresponding Fechner law[J]. Journal of Mathematical Psychology,2000,44(2):330-335.
[14] 巩如英,王飞,刘雅莉,等. 韦伯-费希纳定律评价模型在景观环境质量评价中的应用[J]. 西北林学院学报,2006,21(1):131-135. GONG Ruying,WANG Fei,LIU Yali,et al. Assessment of landscape environmental quality based on Weber-Fechner's law[J]. Journal of Northwest Forestry University,2006,21(1):131-135.
[15] 张宝,刘静玲,陈秋颖,等. 基于韦伯-费希纳定律的海河流域水库水环境预警评价[J]. 环境科学学报,2010,30(2):268-274. ZHANG Bao,LIU Jingling,CHEN Qiuying,et al. Research of water environment forewarning for reservoirs in Haihe River Basin[J]. Acta Scientiae Cirumstantiae,2010,30(2):268-274.
[16] 李小燕,王菲凤,张江山. 基于韦伯-费希纳定律的湖泊富营养化评价[J]. 水电能源科学,2011,29(3):37-39. LI Xiaoyan,WANG Feifeng,ZHANG Jiangshan. Lake eutrophication assessment based on Weber-Fechner law[J]. Water Resources and Power,2011,29(3):37-39.
[17] 林秀珠,饶清华,欧晓敏. 韦伯-费希纳模型在湖泊(水库)预警评价中的应用[J]. 水土保持通报,2018,38(2):285-291. LIN Xiuzhu,RAO Qinghua,OU Xiaomin. Application of Weber-Fechner model to water environment forewarning of lakes(reservoirs)[J]. Bulletin of Soil and Water Conservation,2018,38(2):285-291.
[18] 钟龙芳,王菲凤,张江山. 基于韦伯-费希纳定律的地下水环境质量评价[J]. 环境科学与管理,2012,37(12):189-192. ZHONG Longfang,WANG Feifeng,ZHANG Jiangshan. Groundwater quality assessment based on Weber-Fechner law[J]. Environmental Science and Management,2012,37(12):189-192.
[19] 李因果,李新春. 综合评价模型权重确定方法研究[J]. 辽东学院学报(社会科学版),2007,9(2):92-97. LI Yinguo LI Xinchun. Weight determination of comprehensive evaluation model[J]. Journal of Eastern Liaodong University(Social Sciences),2007,9(2):92-97.
[20] 李祚泳,彭荔红. 基于韦伯-费希纳拓广定律的环境空气质量标准[J]. 中国环境监测,2003,19(4):17-18. LI Zuoyong,PENG Lihong. Environmental air quality standard based on Weber-Fischna's law[J]. Environmental Monitoring in China,2003,19(4):17-18.
[21] 周爱仙. 煤矿区生态环境现状评价及预警研究以南屯煤矿区为例[D]. 济南:山东师范大学,2006. ZHOU Aixian. The actuality evaluation and prewarning study of the environment of coal mining area[D]. Jinan:Shandong Normal University,2006.
[22] 李子成,邓义祥,郑丙辉. 中国湖库营养状态现状调查分析[J]. 环境科学与技术,2012,35(61):209-213. LI Zicheng,DENG Yixiang,ZHENG Binghui. Investigation of the eutrophication status of the lakes and reservoirs in China[J]. Environmental Science & Technology,2012,35(61):209-213.
[23] 王兴明. 淮南煤矸石堆积地重金属元素环境生物地球化学研究[D]. 淮南:安徽理工大学,2013. WANG Xingming. Environmental biogeochemistry of heavy metals in different mediums in dumping sites of coal mine spoil in Huainan[D]. Huainan:Anhui University of Science & Technology,2013.
[24] 任永乐,董少春,姚素平. 淮南塌陷塘重金属空间分布特征研究[J]. 煤田地质与勘探,2018,46(1):125-134. REN Yongle,DONG Shaochun,YAO Suping. Spatial distribution characteristics of heavy metals in Huainan subsidence pond[J]. Coal Geology & Exploration,2018,46(1):125-134.
[25] 裴文明,张慧,姚素平,等. 淮南矿区不同类型沉陷水域水质遥感反演和时空变化分析[J]. 煤田地质与勘探,2018,46(3):85-90. PEI Wenming,ZHANG Hui,YAO Suping,et al. Remote sensing inversion and analysis on spatial-temporal variation of water quality in different types of subsided waterlogged zones in Huainan mining area[J]. Coal Geology & Exploration,2018,46(3):85-90.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons