Coal Geology & Exploration
Abstract
In some cases, metals such as germanium, gallium, lithium and rare earth elements can be enriched in coal, which is an important potential source of these metals. There are abundant coal resources in northern China, and a large number of coal-metal ore spots(deposits) have been found, and the distribution of these ore spots(deposits) shows certain temporal and spatial characteristics: Metals in Permo-Carboniferous coal occur mainly as gallium and lithium-enriched ore spots, mainly are distributed in the northern coalfields of North China coal bearing regions and mining areas such as Pingshuo and Jincheng in Shanxi Province; the metal enrichment in Early-Middle Jurassic coal is mainly concentrated in Zhundong, Tuha in Xinjiang Autonomous Region, Muli coalfield in Qinghai Province, and is mainly gallium-enriched in coal, coal-rare earth elements anomaly has been found in the Early Jurassic coal in Erlian basin, which is a good prospecting clue; the Early Cretaceous coal mainly contains germanium in Erlian basin and Hailar basin. The time span of coal-accumulating period in north China is long, the coal-accumulating environments are diverse, the types of coal-bearing basins are diverse, the frequent and violent tectonic evolution process in north China after coal-accumulating period and coal formation, and the diverse types of coal rocks could provide material source, migration condition, channel and sedimentary accumulation condition for the enrichment of different trace elements in coal, which has a good prospect of metal resources in coal. It is suggested to further enhance the investigation and research work of key metal ore spots(deposits) resources in coal, especially in gangue and fly ash, so as to provide reference for the occurrence and prediction of key metal resources in coal, strengthen the extraction and utilization technology of key metals, and the protection of key metal resources in coal by formulating resource protection policies.
Keywords
metal ore spots(deposits) in coal, coal-forming ages, spatial-temporal distribution, resources prospect, northern China
DOI
10.3969/j.issn.1001-1986.2020.02.008
Recommended Citation
NING Shuzheng, HUANG Shaoqing, ZHANG Li,
et al.
(2020)
"Distribution and resource prospect of metal ore spots(deposits) in coal of different coal-forming ages in northern China,"
Coal Geology & Exploration: Vol. 48:
Iss.
2, Article 9.
DOI: 10.3969/j.issn.1001-1986.2020.02.008
Available at:
https://cge.researchcommons.org/journal/vol48/iss2/9
Reference
[1] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106-111. ZHAI Mingguo,WU Fuyuan,HU Ruizhong,et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):106-111.
[2] 代世峰,任徳贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707-1715. DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal-hosted rare metal deposites:Genetic type,modes of occurrence and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707-1715.
[3] 宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501-2513. NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501-2513.
[4] 毛景文,谢桂青,张作衡,等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报,2005,21(1):169-188. MAO Jingwen,XIE Guiqing,ZHANG Zuoheng,et al. Mesozoic large-scale metallogenic pulses in north China and corresponding geodynamic settings[J]. Acta Petrologica Sinica,2005,21(1):169-188.
[5] 宁树正,邓小利,李聪聪,等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报,2017,42(9):2214-2225. NING Shuzheng,DENG Xiaoli,LI Congcong,et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society,2017,42(9):2214-2225.
[6] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局与构造控煤作用[M]. 北京:科学出版社,2017. CAO Daiyong,NING Shuzheng,GUO Aijun,et al. Tectonic framework of coalfields and tectonic control of coal seams in China[M]. Beijing:Science Press,2017.
[7] 张复新,王立社. 内蒙古准格尔黑岱沟超大型煤型镓矿床的形成与物质来源[J]. 中国地质,2009,36(2):417-423. ZHANG Fuxin,WANG Lishe. The formation and material sources of the superlarge Hada Gol Ga-bearing coal deposit in Jungar Banner,Inner Mongolia[J]. Geology in China,2009,36(2):417-423.
[8] 代世峰,任德贻,李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报,2006,51(2):177-185. DAI Shifeng,REN Deyi,LI Shengsheng. Discovery of the superlarge gallium deposits in Inner Mongolia,Jungar[J]. Chinese Science Bulletin,2006,51(2):177-185.
[9] DAI Shifeng,JIANG Yaofa,WARD C R,et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine,Inner Mongolia,China:Further evidence for the existence of an Al(Ga and REE) ore deposit in the Jungar coalfield[J]. International Journal of Coal Geology,2012,98:10-40.
[10] SUN Yuzhuang,ZHAO Cunliang,QIN Shenjun,et al. Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield,China[J]. Ore Geology Reviews,2016,72:659-668.
[11] 周建飞,王金喜,白观累,等. 山西平朔矿区11#煤中镓的分布特征及富集因素[J]. 煤炭技术,2014,33(11):82-84. ZHOU Jianfei,WANG Jinxi,BAI Guanlei,et al. Distribution characteristics and enrichment factor Ga in coal seam 11# from Pingshuo mining in Shanxi[J]. Coal Technology,2014,33(11):82-84.
[12] 秦勇,王文峰,程爱国,等. 首批煤炭国家规划矿区煤中镓的成矿前景[J]. 中国煤炭地质,2009,21(1):17-21. QING Yong,WANG Wenfeng,CHENG Aiguo,et al. Study of ore-forming potential of Gallium in coal for the first group of state programmed mining districts[J]. Coal Geology of China,2009,21(1):17-21.
[13] 刘帮军,林明月. 山西平朔矿区9#煤中锂的富集机理及物源研究[J]. 煤炭技术,2015,34(8):115-117. LIU Bangjun,LIN Mingyue. Enrichment mechanism and material sources of lithium in Li-bearing coal seam No.9 from Pingshuo mining district of Shanxi Province[J]. Coal Technology,2015,34(8):115-117.
[14] 赵存良. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京:中国矿业大学(北京),2015. ZHAO Cunliang. Distribution and enrichment mechanism of multi-metallic elements associated with coal in Ordos basin[D]. Beijing:China University of Mining & Technology(Beijing),Beijing,2015.
[15] 王文峰,秦勇,刘新花,等. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]. 中国科学:地球科学,2011,41(2):181-196. WANG Wenfeng,QIN Yong,LIU Xinhua,et al. Distribution,occurrence and enrichment causes of gallium in coals from the Jungar coalfield,Inner Mongolia[J]. Science China:Earth Sciences,2011,41(2):181-196.
[16] 张佳为. 胡家河矿富惰质组煤的成煤环境及地球化学特征[D]. 邯郸:河北工程大学,2018. ZHANG Jiawei. Geochemical characteristics and formation environment of rich inertinite coal in Hujiahe mine[D]. Handan:Hebei University of Engineering,2018.
[17] 陈磊,邵培,熊武候,等. 新疆准东煤田中侏罗统煤系镓元素的分布特征及赋存机理探讨[J]. 地学前缘,2018,25(4):76-85. CHEN Lei,SHAO Pei,XIONG Wuhou,et al. Discussion on distribution and occurrence mechanism of gallium in the Middle Jurassic coal-bearing strata of the eastern Jungar coalfield,Xinjiang[J]. Earth Science Frontiers,2018,25(4):76-85.
[18] 宁树正,邓小利,李聪聪,等. 中国煤中金属元素矿产资源[M]. 北京:科学出版社,2019. NING Shuzheng,DENG Xiaoli,LI Congcong,et al. Metal element mineral resources in the coal of China[M]. Beijing:Science Press,2019.
[19] SHAO Pei,WANG Wenfeng,CHEN Lei,et al. Distribution,occurrence and enrichment of gallium in the Middle Jurassic coals of the Muli coalfield,Qinghai,China[J]. Journal of Geochemical Exploration,2018,185:116-129.
[20] 黄少青,张建强,张恒利,等. 内蒙古二连盆地煤中稀土元素特征研究[J/OL].中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20191209.1611.008.html.
[21] 杨锋杰. 二连盆地的侏罗系[D]. 上海:同济大学,2003. YANG Fengjie. Jurassic in Erlian basin[D]. Shanghai:Tongji University,2003.
[22] 黄文辉,万欢,杜刚,等. 内蒙古自治区胜利煤田煤-锗矿床元素地球化学性质研究[J]. 地学前缘,2008,15(4):56-64. HUANG Wenhui,WAN Huan,DU Gang,et al. Research on elemental geochemical characteristics of coal-Ge deposit in Shengli coalfield,Inner Mongolia,China[J]. Earth Science Frontiers,2008,15(4):56-64.
[23] 王婷灏,黄文辉,闫德宇,等. 中国大型煤-锗矿床成矿模式研究进展:以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘,2016,23(3):113-123. WANG Tinghao,HUAG Wenhui,YAN Deyu,et al. Progress of research on mineralization mode of large coal-Ge deposits in China:Coal-Ge deposit in Wulantuga of Inner-Mongolia and Lincang of Yunan[J]. Earth Science Frontiers,2016,23(3):113-123.
[24] 黄少青,张建强,张恒利. 东北赋煤区煤中锗元素分布特征及富集控制因素[J]. 煤田地质与勘探,2018,46(3):6-10. HUANG Shaoqing,ZHANG Jianqiang,ZHANG Hengli. Distribution and controlling factors of enrichment of germanium in coal-bearing region of northeast China[J]. Coal Geology & Exploration,2018,46(3):6-10.
[25] DAI Shifeng,WANG Xibo,SEREDIN V V,et al. Petrology,mineralogy,and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit,Inner Mongolia,China:New data and genetic implications[J]. International Journal of Coal Geology,2012,90/91:72-99.
[26] 黄少青,张建强,霍超,等. 热液对五牧场矿区煤中锗富集影响的探讨[J]. 中国煤炭地质,2017,29(4):12-17. HUANG Shaoqing,ZHANG Jianqiang,HUO Chao,et al. Discussion on germanium enrichment in coal impacted by hydrothermal solution in Wumuchang minefield[J]. Coal Geology of China,2017,29(4):12-17.
[27] SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76:253-289.
[28] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3-21.
[29] SEREDIN V V,DAI Shifeng. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94:67-93.
[30] DAI Shifeng,GRAHAM I T,WARD C R. A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology,2016,159:82-95.
[31] SEREDIN V V. Rare earth element-bearing coals from the Russian Far East deposits[J]. International Journal of Coal Geology,1996,30(1):101-129.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons