•  
  •  
 

Coal Geology & Exploration

Abstract

after long-term development and improvement, the in-seam seismic(ISS) technology has achieved relatively reliable results in detecting the internal structural development of the coal seam, the thickness variation of the coal seam, and the distribution pattern of the pinch. In order to comprehensively and systematically understand the ISS technology and promote the development of the ISS technology, the status of the ISS technology is reviewed. First, the principle of ISS is briefly described. Then, according to the process of ISS, according to the steps of source excitation, signal acquisition, preprocessing, signal extraction, data processing and analysis, the working principles and methods of related technologies are classified and the excitation modes and signals of different sources are applied. The extraction method and data processing technology were compared and analyzed. Finally, the system summarizes the work and application status of ISS technology in coal thickness analysis, pinch discrimination, structure identification and so on. At present, the coal mine underground ISS technology has certain limitations, and the detection accuracy is difficult to meet the geological exploration requirements. In the future, the development of channel wave radar to improve the accuracy of the ISS is a good development direction.

Keywords

in-seam seismic(ISS), coal thickness analysis, structural recognition, coal mine safety, channel wave radar

DOI

10.3969/j.issn.1001-1986.2020.02.032

Reference

[1]EVISON F F. A coal seam as a guide for seismic energy[J]. Nature,1995,176(4495):1224-1225.

[2] KREY T C. Channel waves as a tool of applied geophysics in coal mining[J]. Geophysics,1963,28(5):701-714.

[3] LIU E,CRAMPIN S,ROTH B. Modelling channel waves with synthetic seismograms in an anisotropic in-seam seismic survey[J]. Geophysical Prospecting,1992,40(5):513-540.

[4] YANG Zhen,GE Maochen,WANG Shugang. Characteristics of transmitting channel wave in a coal seam[J]. Mining Science and Technology,2009,19(3):331-336.

[5] BRENTRUP F K. Seismische vorfelderkundung zur ortung tektonischer störungen im steinkohlenbergbau[J]. Gluckauf,1970,106:933-938.

[6] 王伟,高星,李松营,等. 槽波层析成像方法在煤田勘探中的应用:以河南义马矿区为例[J]. 地球物理学报,2012,55(3):1054-1062. WANG Wei,GAO Xing,LI Songying,et al. Channel wave tomography method and its application in coal mine exploration:An example from Henan Yima mining area[J]. Chinese Journal of Geophysics,2012,55(3):1054-1062.

[7] 姬广忠,程建远,胡继武,等. 槽波衰减系数成像方法及其应用[J]. 煤炭学报,2014,39(增刊2):471-475. JI Guangzhong,CHENG Jianyuan,HU Jiwu,et al. In-seam wave imaging using attenuation coefficient:Method and application[J]. Journal of China Coal Society,2014,39(S2):471-475.

[8] 任亚平. 槽波地震勘探在煤矿大型工作面的应用[J]. 煤田地质与勘探,2015,43(3):102-104. REN Yaping. Application of ISS in supper large coal face[J]. Coal Geology & Exploration,2015,43(3):102-104.

[9] BUCHANAN D J. The propagation of attenuated SH channel waves[J]. Geophysical Prospecting,1978,26(1):16-28.

[10] HU Y,MCMECHAN G A. Imaging mining hazards within coalbeds using prestack wave equation migration of in-seam seismic survey data:A feasibility study with synthetic data[J]. Journal of Applied Geophysics,2007,63(1):24-34.

[11] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报,2015,40(8):1879-1885. WANG Ji. Experiment and method of void roadway detection using reflected in-seam wave[J]. Journal of China Coal Society,2015,40(8):1879-1885.

[12] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121-124. JI Guangzhong. Diffraction migration imaging of reflected in-seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121-124.

[13] 姬广忠,魏久传,杨思通,等. HTI煤层介质槽波波场与频散特征初步研究[J]. 地球物理学报,2019,62(2):789-801. JI Guangzhong,WEI Jiuchuan,YANG Sitong,et al. Preliminary study on wave field and dispersion characteristics of channel waves in HTI coal seam medium[J]. Chinese Journal of Geophysics,2019,62(2):789-801.

[14] 郝鸿儒,武启,贾晋才. 槽波地震勘探技术在煤矿构造探测上的应用[J]. 科技风,2017(1):72. HAO Hongru,WU Qi,JIA Jincai. Application of channel wave seismic exploration technology in coal mine structure detection[J]. Technology Wind,2017(1):72.

[15] MECHIE J,SCHURR B,YUAN X,et al. Observations of guided waves from the pamir seismic zone provide additional evidence for the existence of subducted continental lower crust[J]. Tectonophysics,2019,762:1-16.

[16] WANG Wei,GAO Xing,LI Songying,et al. Fault detection in coal seam by the channel wave method[J]. Scientific Journal of Earth Sciences:Chinese and English,2014,4(1):27-36.

[17] GUO C,YANG Z,CHANG S,et al. Precise identification of coal thickness by channel wave based on a hybrid algorithm[J]. Applied Sciences,2019,9(7):1493.

[18] YANCEY D J,IMHOF M G,FEDDOCK J E,et al. Analysis and application of coal-seam seismic waves for detecting abandoned mines[J]. Geophysics,2007,72(5):7-15.

[19] 荣晓伟. 含夹矸煤层槽波频散特性及其影响因素分析[J]. 中国煤炭地质,2015,27(7):77-79. RONG Xiaowei. Channel wave dispersion features in coal seam with gangue and its impacting factors[J]. Coal Geology of China,2015,27(7):77-79.

[20] 廉洁,李松营,滕吉文,等. 槽波探测技术的多领域应用与试验[J]. 河南理工大学学报(自然科学版),2017,36(5):35-40. LIAN Jie,LI Songying,TENG Jiwen,et al. Multi-field application and experiment of channel wave detection technology[J]. Journal of Henan Polytechnic University(Natural Science),2017,36(5):35-40.

[21] 李江华,廉玉广,焦阳,等. 综合物探技术在工作面导水构造探测中的应用[J]. 煤矿安全,2018,49(3):129-132. LI Jianghua,LIAN Yuguang,JIAO Yang,et al. Application of comprehensive geophysical exploration technique in exploration of water conductive structures in working face[J]. Safety in Coal Mines,2018,49(3):129-132.

[22] 姚小帅,冯磊,廉洁,等. 槽波地震反射法在断裂构造探测中的应用[J]. 中州煤炭,2015(9):101-104. YAO Xiaoshuai,FENG Lei,LIAN Jie,et al. Application of in-seam seismic reflection method in fracture structure detection[J]. Zhongzhou Coal,2015(9):101-104.

[23] 焦阳,卫金善,李梓毓,等. 槽波反射法在断层探测中的应用研究[J]. 煤炭科学技术,2017,45(11):187-191. JIAO Yang,WEI Jinshan,LI Ziyu,et al. Study on channel wave reflection method applied to detection of fault[J]. Coal Science and Technology,2017,45(11):187-191.

[24] 蒋锦朋,何良,朱培民,等. 基于槽波的TVSP超前探测方法:可行性研究[J]. 地球物理学报,2018,61(9):3865-3875. JIANG Jinpeng,HE Liang,ZHU Peimin,et al. TVSP method for reconnaissance beyond coal roadway based on in-seam seismic waves:A feasibility study[J]. Chinese Journal of Geophysics,2018,61(9):3865-3875.

[25] 宋保陵,满立新,刘献科,等. 基于槽波的煤矿地质构造超前探测技术研究[J]. 能源与环保,2017,39(8):87-91. SONG Baoling,MAN Lixin,LIU Xianke,et al. Study on advance detection technology of coal mine geological structure based on trough wave[J]. China Energy and Environmental Protection,2017,39(8):87-91.

[26] 蔺国华. 透射槽波方法在中厚煤层隐伏小断层探测中的应用[J]. 中国煤炭地质,2018,30(增刊1):113-117. LIN Guohua. Application of transmitted channel wave method in medium-thick coal seam concealed minor fault prospecting[J]. Coal Geology of China,2018,30(S1):113-117.

[27] HUANG N E,SHEN Z,LONG S R,et al,The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454:903-995.

[28] 李刚,王季,牛欢,等. 透射槽波探测煤矿陷落的方法及应用[J]. 煤炭技术,2016,35(12):135-137. LI Gang,WANG Ji,NIU Huan,et al. Method and application of transmitted in-seam wave in detecting mine collapse[J]. Coal Technology,2016,35(12):135-137.

[29] 焦阳,卫金善,杨新亮,等. 煤矿陷落柱槽波探查技术及应用[J]. 能源与环保,2019,41(1):62-69. JIAO Yang,WEI Jinshan,YANG Xinliang,et al. Slot wave detection technology and application of collapsed column in coal mine[J]. China Energy and Environmental Protection,2019,41(1):62-69.

[30] 李雪梅. 三维地震勘探预测煤层冲刷带[J]. 能源技术与管理,2017,42(2):173-175. LI Xuemei. 3D seismic prospecting for prediction of washout of coal seam[J]. Energy Technology and Management,2017,42(2):173-175.

[31] 丛丽萍. 槽波地震勘探方法研究[J]. 科技创新与应用,2015(30):73. CONG Liping. Study on ISS exploration methods[J]. Technology Innovation and Application,2015(30):73.

[32] 张强,雍自春,龙自阳,等. 槽波地震探测技术在金家渠煤矿首采工作面断层探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):33-36. ZHANG Qiang,YONG Zichun,LONG Ziyang,et al. Application of channel wave seismic technique in detection of faults in the first working of Jinjiaqu colliery[J]. Coal Geology & Exploration,2018,46(S1):33-36.

[33] 赵朋朋. 槽波透射与反射联合勘探在小构造探测中的应用[J]. 煤炭工程,2017,49(5):47-50. ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47-50.

[34] 黄三. 井下槽波地震数据采集及信号处理研究[D]. 桂林:桂林电子科技大学,2017. HUANG San. Research on underground in-seam seismic data acquisition and signal processing[D]. Guilin:Guilin University of Electronic Technology,2017.

[35] ZHANG J,LIU S,WANG B,et al. Response of triaxial velocity and acceleration geophones to channel waves in a 1-m thick coal seam[J]. Journal of Applied Geophysics,2019,166:112-121.

[36] 李驰. 槽波震源激发在综采工作面地质勘查中的应用研究[D]. 太原:太原理工大学,2018. LI Chi. Application research about ISS seismic source excitation in of fully-mechanized face on geological exploration[D]. Taiyuan:Taiyuan University of Technology,2018.

[37] 胡泽安. 槽波信号提取方法综述[J]. 黑龙江科技信息,2013(9):43. HU Ze'an. Review of channel wave signal extraction methods[J]. Heilongjiang Science and Technology Information,2013(9):43.

[38] 王季,朱书阶,程建远,等. 基于二维傅里叶变换的煤层槽波信号提取[C]. Intelligent Information Technology Application Association. Proceedings of 2011 AASRI Conference on Information Technology and Economic Development (AASRI-ITED 2011 V3). Intelligent Information Technology Application Association:智能信息技术应用学会,2011:381-384. WANG Ji,ZHU Shujie,CHENG Jianyuan,et al. Extraction of channel wave in a coal seam based on the 2D Fourier transform[C]. Intelligent Information Technology Application Association. Proceedings of 2011 AASRI Conference on Information Technology and Economic Development (AASRI-ITED 2011 V3). Intelligent Information Technology Application Association:Intelligent Information Technology Application Society,2011:381-384.

[39] 马欣,杨思通,李新凤,等. 基于透射槽波的采煤工作面陷落柱探测模拟研究[J]. 煤矿安全,2019,50(4):32-36. MA Xin,YANG Sitong,LI Xinfeng,et al. Simulation study on detection of collapse column in coal face based on transmitted slot wave[J]. Safety in Coal Mines,2019,50(4):32-36.

[40] 王季. 基于EMD算法的煤层透射槽波信号提纯[J]. 中国煤炭地质,2012,24(2):53-55. WANG Ji. Purification of coal seam transmission in-seam seismic signals based on EMD algorithm[J]. Coal Geology of China,2012,24(2):53-55.

[41] 余波,郭全仕,须振华,等. 水平旋转与极性判断结合的井中微地震资料震相识别方法[J]. 石油物探,2013,52(6):586-595. YU Bo,GUO Quanshi,XU Zhenhua,et al. The microseimic phase recognition method for horehole mincroseimic data using horizontal rotation and polarity judgment[J]. Geophysical Prospecting for Petroleum,2013,52(6):586-595.

[42] 裴文春,李忠,王秀荣,等. 反射槽波在同煤东周窑煤矿断层探测中的应用[J]. 内蒙古煤炭经济,2017(11):155-158. PEI Wenchun,LI Zhong,WANG Xiurong,et al. Application of reflected channel wave in fault detection of Dongzhouyao coal mine[J]. Inner Mongolia Coal Economy,2017(11):155-158.

[43] 王一. 矿井反射槽波包络叠加成像方法及其应用[J]. 煤田地质与勘探,2017,45(5):152-154. WANG Yi. Method and application of reflected in-seam wave enveloped superposition imaging in coal mine[J]. Coal Geology & Exploration,2017,45(5):152-154.

[44] WANG B,LIU S,ZHOU F,et al. Dispersion characteristics of SH transmitted channel waves and comparative study of dispersion analysis methods[J]. Journal of Computational and Theoretical Nanoscience,2016,13(2):1468-1474.

[45] HE W,JI G,DONG S,et al. Theoretical basis and application of vertical Z-component in-seam wave exploration[J]. Journal of Applied Geophysics,2017,138:91-101.

[46] 侯志星. 浅谈煤层冲刷带及其处理[J]. 山西焦煤科技,2014(增刊1):148-149. HOU Zhixing. A brief talk on coal seam scouring zone and its treatment[J]. Shanxi Coking Coal Science & Technology,2014(S1):148-149.

[47] 王增玉,杨德义,曹志勇,等. 构造煤及夹矸对煤层AVO正演模拟结果影响分析[J]. 地球物理学进展,2018,33(2):754-759. WANG Zengyu,YANG Deyi,CAO Zhiyong,et al. Analysis on the influence of tectonic coal and parting on AVO forward modeling of coal seam[J]. Progress in Geophysics,2018,33(2):754-759.

[48] 郭凯奇. 基于断层和陷落柱构造对煤矿生产的影响分析[J]. 矿业装备,2017(6):52-53. GUO Kaiqi. Analysis of the impact of fault and collapse column structure on coal mine production[J]. Mining Equipment,2017(6):52-53.

[49] 刘强隆,洪托. 岩溶陷落柱分布规律及预测研究[J]. 煤矿机械,2016,37(7):69-70. LIU Qianglong,HONG Tuo. Study on distribution regularity of karst collapse column and location prediction[J]. Coal Mine Machinery,2016,37(7):69-70.

[50] 管永伟,陈同俊,崔若飞,等. 煤层冲刷带地震响应特征及其与煤层瓦斯突出的相关性分析[J]. 地球物理学进展,2016,31(1):191-197. GUAN Yongwei,CHEN Tongjun,CUI Ruofei,et al. Analysis of seismic response and correlation with coal seam gas outburst in the coal seam scouring zone[J]. Progress in Geophysics,2016,31(1):191-197.

[51] 崔凡,耿晓航,俞慧婷,等. 基于探地雷达的煤层小构造超前探测[J]. 煤矿安全,2019,50(5):153-157. CUI Fan,GENG Xiaohang,YU Huiting,et al. Application research of GPR advanced detection in small structure of coal seam[J]. Safety in Coal Mines,2019,50(5):153-157.

[52] 丁卫. 基于SH槽波的采空区探测技术研究[J]. 中州煤炭,2016(10):128-132. DING Wei. Study on detection technology in goaf based on SH channel wave[J]. Zhongzhou Coal,2016(10):128-132.

[53] GE M,WANG H,HARDY H R,et al. Void detection at an anthracite mine using an in-seam seismic method[J]. International Journal of Coal Geology,2008,73(3/4):201-212.

[54] 王季,李刚,吴国庆,等. 采煤工作面地质异常体透射槽波探测技术[J]. 煤炭科学技术,2016,44(6):159-163. WANG Ji,LI Gang,WU Guoqing,et al. Transmitted channel wave detecting technology of geologic anomalous body in coal mining face[J]. Coal Science and Technology,2016,44(6):159-163.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.