Coal Geology & Exploration
Abstract
Raman spectroscopy can reflect the order degree and structural defects of carbon materials, and can be used to characterize the structural changes during the evolution of high rank coal-cryptocrystalline graphite, and analyze the relationship between Raman parameters of coal with different deformation and metamorphic degrees and the spacing of surface network(d002). The results showed that: (1) there was stepped variation between the G peak position and d002, but the graphite and high rank coal could be distinguished well. The S2 peak, the full width at half maximum of D1 and G had a good linear relationship with d002; (2) the peak difference between D1 and G and the full width at half maximum ratio decreased with the decrease of d002; the peak difference between S2 and S4 increased first and then decreased with the decrease of d002, while the intensity ratio and area ratio increased gradually; (3) the relationship of interlayer spacing(d002) and Raman parameters figure shows the structure of two obvious evolutionary step, namely anthracite to ultra-anthracite (Rmax>6.5 %, P(D1-G)<235 cm-1, P(S2-S4)> 525 cm-1 and half peak width ratio dropped significantly, La/Lc reduce 2-3 times), semi-graphite to graphite evolutionary stages (P(D1-G), ID1/IG, AD1/AG significantly reduced; La, Lc increase rapidly). The Raman spectral characteristics of coal structure at different evolution stages can be well reflected by taking d002 as the scale.
Keywords
high rank coals, cryptocrystalline graphite, structural evolution, XRD, Raman spectrum, mutation
DOI
10.3969/j.issn.10011986.2020.01.005
Recommended Citation
LI Huantong, WANG Nan, ZHU Zhirong,
et al.
(2020)
"Raman spectrum characteristic and structural evolution of high rank coalscryptocrystalline graphite,"
Coal Geology & Exploration: Vol. 48:
Iss.
1, Article 6.
DOI: 10.3969/j.issn.10011986.2020.01.005
Available at:
https://cge.researchcommons.org/journal/vol48/iss1/6
Reference
[1] 郑辙,陈宣华. 煤基石墨的Raman光谱研究[J]. 中国科学(B辑),1994,24(6):640-647. ZHENG Zhe,CHEN Xuanhua. Raman spectrum of coal-based graphite[J]. Science in China(Series B),1994,24(6):640-647.
[2] 苏现波,司青,宋金星. 煤的拉曼光谱特征[J]. 煤炭学报,2016,41(5):1197-1202. SU Xianbo,SI Qing,SONG Jinxing. Characteristics of coal Raman spectrum[J]. Journal of China Coal Society,2016,41(5):1197-1202.
[3] 李霞,曾凡桂,王威,等. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报,2016,41(9):2298-2304. LI Xia,ZENG Fangui,WANG Wei,et al. Raman characterization of structural evolution in the low-middle rank coals[J]. Journal of China Coal Society,2016,41(9):2298-2304.
[4] 李美芬,曾凡桂,齐福辉,等. 不同煤级煤的Raman谱特征及与XRD结构参数的关系[J]. 光谱学与光谱分析,2009,29(9):2446-2449. LI Meifen,ZENG Fangui,QI Fuhui,et al. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectroscopy and Spectral Analysis,2009,29(9):2446-2449.
[5] YUI T F,HUANG E,XU J. Raman spectrum of carbonaceous material:A possible metamorphic grade indicator for low-grade metamorphic rocks[J]. Journal of Metamorphic Geology,1996,14(2):115-124.
[6] XU Kai,HU Song,WANG Yi,et al. Relation between char structures and formation of volatiles during the pyrolysis of Shenfu coal:Further understanding on the effects of mobile phase and fixed phase[J]. Fuel Processing Technology,2018,178:379-385.
[7] 林红,琚宜文,侯泉林,等. 脆、韧性变形构造煤的激光Raman光谱特征及结构成分响应[J]. 自然科学进展,2009,19(10):1117-1125. LIN Hong,JU Yiwen,HOU Quanlin,et al. Raman spectral characteristics and structural component responses of brittle and ductile deformed structural coals[J]. Progress in Natural Science,2009,19(10):1117-1125.
[8] 姜波,秦勇,宋党育,等. 高煤级构造煤的XRD结构及其构造地质意义[J]. 中国矿业大学学报,1998,27(2):6-9. JIANG Bo,QIN Yong,SONG Dangyu,et al. XRD structure of high rank tectonic coals and its implication to structural geology[J]. Journal of China University of Mining & Technology,1998,27(2):6-9.
[9] RAPHAEL T,JESUS G H,ISAAC H C. Observation of splitting of the E2g mode and two-phonon spectrum in graphites[J]. Solid State Communications,1978,27(5):507-510.
[10] 曹代勇,李小明,张守仁. 构造应力对煤化作用的影响:应力降解机制与应力缩聚机制[J]. 中国科学(D辑:地球科学),2006,36(1):59-68. CAO Daiyong,LI Xiaoming,ZHANG Shouren. Research on the effect between tectonic stress and coalification-stress degradation mechanism and polycondensation mechanism[J]. Science in China(Series D:Earth Sciences),2006,36(1):59-68.
[11] 李焕同,莫佳峰,武玉良,等. 湖南新化地区煤变形变质与构造环境特征[J]. 煤田地质与勘探,2017,45(4):7-12. LI Huantong,MO Jiafeng,WU Yuliang,et al. Coal deformation,metamorphism and tectonic environment in Xinhua,Hunan[J]. Coal Geology & Exploration,2017,45(4):7-12.
[12] SONIBARE O O,HAEGER T,FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction,Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347-5353.
[13] 潘伟尔,杨起,潘治贵. 湘赣中南部地区煤的岩浆热变质作用[J]. 现代地质,1993,7(3):326-336. PAN Wei'er,YANG Qi,PAN Zhigui. Magmatic thermametamorphism of coal in central-southern Hunan and Jiangxi Province[J]. Geoscience,1993,7(3):326-336.
[14] 董业绩,曹代勇,王路,等. 地质勘查阶段煤系石墨与无烟煤的划分指标探究[J]. 煤田地质与勘探,2018,46(1):8-12. DONG Yeji,CAO Daiyong,WANG Lu,et al. Indicators for partitioning graphite and anthracite in coal measures during geological exploration phase[J]. Coal Geology & Exploration,2018,46(1):8-12.
[15] 王路,董业绩,张鹤,等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报,2018,3(1):9-19. WANG Lu,DONG Yeji,ZHANG He,et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology,2018,3(1):9-19.
[16] CAO Daiyong,LI Xiaoming,DENG Juemei. Coupling effect between coalification and tectonic-thermal events:Geological records of geodynamics of sedimentary basin[J]. Earth Science Frontiers,2009,16(4):52-60.
[17] 李焕同,陈飞,邹晓艳,等. 湖南新化天龙山岩体侵位对煤系变形变质的构造效应[J]. 煤炭学报,2019,44(7):2206-2215. LI Huantong,CHEN Fei,ZOU Xiaoyan,et al. Effect of intrusion of the Tianlongshan granite body on coal seam deformation and metamorphism characteristics in Xinhua area,Hunan Province[J]. Journal of China Coal Society,2019,44(7):2206-2215.
[18] LI Xiaojiang,HAYASHI J,LI Chunzhu. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12):1700-1707.
[19] DRESSELHAUS M S,JORIO A,HOFMANN M,et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters,2010,10(3):751-758.
[20] WANG Shuai,LI Tingting,WU Liping,et al. Second-order Raman spectroscopy of char during gasification[J]. Fuel Processing Technology,2015,135:105-111.
[21] LEE Y J. The second order Raman spectroscopy in carbon crystallinity[J]. Journal of Nuclear Materials,2004,325(2):174-179.
[22] BENY-BASSEZ B C,ROUZAUD J N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy[J]. Scanning Electron Microscopy,1985,1985:119-132.
[23] BUSTIN R M,ROSS J V,ROUZAUD J-N. Mechanisms of graphite formation from kerogen:Experimental evidence[J]. International Journal of Coal Geology,1995,28(1):1-36.
[24] TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53(3):1126-1130.
[25] FERRARI A C,ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61:14095-14107.
[26] 韩德馨. 中国煤岩学[M]. 徐州:中国矿业大学出版社,1996:229-237. HAN Dexin. Coal petrology in China[M]. Xuzhou:China University of Mining & Technology Press,1996:229-237.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons