•  
  •  
 

Coal Geology & Exploration

Abstract

The azimuthal anisotropy of pre-stack P-wave is the most widely used method to detect fracture. This method mainly uses the long-axis and minor axis information of the ellipse fitted by the AVAZ seismic data to evaluate the fracture. When applying it in practice, it is considered that the variation of AVAZ response characteristics in the fractured reservoirs is just determined by the anisotropic parameters, and the influence of non-anisotropic parameters is not taken into account, which leads to the multi-solution of fracture evaluation. In order to improve the accuracy of this fracture evaluation technology, we started with the model analysis, the anisotropic parameters and lithological parameters were set to normal distribution functions, then the Monte Carlo stochastic method was used to carry out the pre-stack AVAZ forward modeling. Firstly, the influence of the anisotropic parameters on the ellipse fitting was simply analyzed. It is concluded that the anisotropic parameter γ has the greatest influence on the elliptic flatness B/A and the anisotropic factor B, the second is the parameter δ, and the parameter ε has the smallest influence. Then, the B and B/A response characteristics of the velocity and density models with different standard deviations were further analyzed. It is concluded that the change of velocity and density should be limited in a small range, in which the fracture evaluation technology is reliable. In addition, the variation of primary wave and shear wave velocity(especially the primary wave velocity) has greater influence on the pre-stack AVAZ response, and the density has almost no effect. Therefore, when applying this method to evaluate the fractured reservoirs, dramatic changes in the lateral lithology will increase the results' uncertainty.

Keywords

HTI medium, AVAZ forward, Ruger formula, Monte Carlo stochastic method, fracture

DOI

10.3969/j.issn.10011986.2020.01.025

Reference

[1] 杨晓,王真理,喻岳钰. 裂缝型储层地震检测方法综述[J]. 地球物理学进展,2010,25(5):1785-1794. YANG Xiao,WANG Zhenli,YU Yueyu. The overview of seismic techniques in prediction of fracture reservoir[J]. Progress in Geophysics,2010,25(5):1785-1794.

[2] 毕研斌,龙胜祥,郭彤楼,等. 地震方位各向异性技术在TNB地区嘉二段储层裂缝检测中的应用[J]. 石油地球物理勘探,2009,44(2):190-195. BI Yanbin,LONG Shengxiang,GUO Tonglou,et al. Application of seismic azimuth anisotropic technique in fractural detection of Lower Triassic Jia-2 reservoir in TNB area[J]. Oil Geophysical Prospecting,2009,44(2):190-195.

[3] 杨涛涛,王彬,吕福亮,等. 相干技术在油气勘探中的应用[J]. 地球物理学进展,2013,28(3):1531-1540. YANG Taotao,WANG Bin,LYU Fuliang,et al. The application of seismic coherence technology for petroleum exploration[J]. Progress in Geophysics,2013,28(3):1531-1540.

[4] 孔选林,唐建明,徐天吉. 曲率属性在川西新场地区裂缝检测中的应用[J]. 石油物探,2011,50(5):517-520. KONG Xuanlin,TANG Jianming,XU Tianji. Application of seismic curvature attribute to fracture prediction in Xinchang area,western Sichuan depression[J]. Geophysical Prospecting for Petroleum,2011,50(5):517-520.

[5] 马晓宇,王军,李勇根,等. 基于蚂蚁追踪的叠前裂缝预测技术[J]. 石油地球物理勘探,2014,49(6):1199-1203. MA Xiaoyu,WANG Jun,LI Yonggen,et al. Prestack fracture prediction based on ant tracking[J]. Oil Geophysical Prospecting,2014,49(6):1199-1203.

[6] 蔡希源,唐建明,陈本池. 三维多分量地震技术在川西新场地区深层致密砂岩裂缝检测中的应用[J]. 石油学报,2010,31(5):737-743. CAI Xiyuan,TANG Jianming,CHEN Benchi. A 3D multicomponent seismic exploration technique applied to the detection of the detection of deep-seated tight sandstone fractures in the Xinchang area of the western Sichuan basin[J]. Acta Petrolei Sinica,2010,31(5):737-743.

[7] 程冰洁,毛树林,徐天吉. 转换波多次分裂数值模拟与层剥离技术应用[J]. 大庆石油学院学报,2010,34(3):29-34. CHENG Bingjie,MAO Shulin,XU Tianji. Application of fracture detection technique by converted wave splitting in multilayer fractured media[J]. Journal of Daqing Petroleum Institute,2010,34(3):29-34.

[8] 曲寿利,季玉新,王鑫,等. 全方位P波属性裂缝检测方法[J]. 石油地球物理勘探,2001,36(4):390-397. QU Shouli,JI Yuxin,WANG Xin,et al. Seimic method for using full-azimuth P-wave attribution to detect fracture[J]. Oil Geophysical Prospecting,2001,36(4):390-397.

[9] TSVANKIN I. Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophysics,1997,62(2):614-629.

[10] RUGER A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935-947.

[11] MALLICK S,CRAFTK,MEISTER L,et al. Determination of the principal direction of azimuthal anisotropy from P-wave seismic data[J]. Geophysics,1998,63(2):692-706.

[12] 范国章,牟永光,金之钧. 裂缝介质中地震波方位AVO特征分析[J]. 石油学报,2002,23(4):42-45. FAN Guozhang,MOU Yongguang,JIN Zhijun. Amplitude virsus offset characteristics of azimuth of seismic wave in fracture reservoir[J]. Acta Petrolei Sinica,2002,23(4):42-45.

[13] 朱成宏,胡建国,许雪峰. 裂隙介质的运动学特征反演与应用[J]. 石油物探,2002,41(3):253-258. ZHU Chenghong,HU Jianguo,XU Xuefeng. Inversion of kinetic properties of P-waves in fractured media and its application[J]. Geophysical Prospecting for Petroleum,2002,41(3):253-258.

[14] 朱兆林,王永刚,曹丹平. 裂缝性储层AVO检测方法综述[J]. 勘探地球物理进展,2004,27(2):87-92. ZHU Zhaolin,WANG Yonggang,CAO Danping. Review of AVO detection methods for fractured reservoirs[J]. Progress in Exploration Geophysics,2004,27(2):87-92.

[15] NARHARI S R,DASHTI Q,SILVA J,et al. Application of prestack orthotropic AVAZ inversion for fracture characterization of a deep carbonate reservoir in northern Kuwait[J]. The Leading Edge,2015,34(12):1488-1493.

[16] 赵才顺,万欢,张昊,等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:尔多斯盆地致密砂岩气区块为例[J]. 地球物理学进展,2019,34(1):257-265. ZHAO Caishun,WAN Huan,ZHANG Hao,et al. Research application of the P-wave anisotropy forward modeling and pre-stack fracture detection:Take the tight sandstone gas block in Ordos basin as an example[J]. Progress in Geophysics,2019,34(1):257-265.

[17] 吴正阳,莫修文,柳建华,等. 裂缝性储层分级评价中的卷积神经网络算法研究与应用[J]. 石油物探,2018,57(4):618-626. WU Zhengyang,MO Xiuwen,LIU Jianhua,et al. Convolutional neural network algorithm for classification evaluation of fractured reservoirs[J]. Geophysical Prospecting for Petroleum,2018,57(4):618-626.

[18] 李慧琼,张盟勃,蒲仁海,等. 黄257井区叠前纵波方位各向异性裂缝分布预测[J]. 石油地球物理勘探,2017,52(2):350-359. LI Huiqiong,ZHANG Mengbo,PU Renhai,et al. Late Triassic fracture detection with seismic azimuth anisotropics in Huang 257 survey, Ordos basin[J]. Oil Geophysical Prospecting,2017,52(2):350-359.

[19] 崔若飞,钱进,陈同俊,等. 利用地震P波确定煤层瓦斯富集带的分布[J]. 煤田地质与勘探,2007,45(6):54-57. CUI Ruofei,QIAN Jin,CHEN Tongjun,et al. Locating the distribution of coalbed methane enriched area using seismic P-wave data[J]. Coal Geology & Exploration,2007,45(6):54-57.

[20] HSU C J,SCHOENBERG M. Elastic waves through a simulated fractured medium[J]. Geophysics,1993,58(7):964-977.

[21] BAKULIN A,GRECHKA V,TSVANKIN I. Estimation of fracture parameters from reflection seismic data-Part I:HTI model due to a single fracture set[J]. Geophysics,2000,65:1788-1802.

[22] THOMSEN L. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophysics Prospecting,1995,43(6):805-829.

[23] THOMSEN L. Weak elastic anisotropy[J]. Geophysics,1986,51(10):1954-1966.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.