•  
  •  
 

Coal Geology & Exploration

Abstract

It is of great practical significance for the prevention and control of groudwater hazards in North China type coalfield to judge transmissivity-impermeability of faults by using karst hydrochemical characteristics of two fault walls. Taking karst groundwater of Taiyuan Formation on both sides of fault F104 in Gubei coal mine as the research object, and based on the analysis of the hydrogeological conditions of two fault walls, main components sources and water-rock interaction differences were analyzed by using Piper trilinear diagram, ion combination ratio and principal component methods. Reverse hydrochemical simulation of karst groundwater was conducted by using PHREEQC software. Research results show that dissolution and precipitation of calcite and dolomite exist in the north and south areas; cation exchange and desulfurization in the south region are stronger than that in the north area; while oxidation of pyrite and dissolution of salt rock in the north area is more obvious than those in the south area; there are significant differences in the hydrochemical environment and water-rock interaction between the two areas. It is inferred that fault F104 has a preferably water-resistance, and affects the oxidation-reduction environment and temperature differences of the two areas, which controlling the direction of groundwater runoff and the degree of water-rock interaction.

Keywords

transmissivity-impermeability of faults, karst groundwater, water-rock interaction, reverse simulation of hydrochemistry, Gubei coal mine, Huainan coalfield, North China type coalfield

DOI

10.3969/j.issn.10011986.2020.01.017

Reference

[1] 黄晖,蒋法文,韩必武,等. 淮南矿区A组煤层底板灰岩钻孔瓦斯喷孔综合探查分析[J]. 煤炭学报,2013,38(11):1988-1992. HUANG Hui,JIANG Fawen,HAN Biwu,et al. Comprehensive detection analysis on the reason of abnormal gas blow-out from the drilling hole through the floor limestone of A group coal seam in Huainan mining area[J]. Journal of China Coal Society,2013,38(11):1988-1992.

[2] 甘林堂. 淮南矿区A组煤底板灰岩水防治及潘二矿突水事故原因分析[J]. 煤矿安全,2018,49(7):171-174. GAN Lintang. Prevention of limestone water in coal floor of group A of Huainan mining area and causes analysis of water inrush accidents in Pan'er mine[J]. Safety in Coal Mines,2018,49(7):171-174.

[3] 朱传峰. 童亭煤矿F10断层导水性能的研究[J]. 煤炭技术,2003,22(9):106-107. ZHU Chuanfeng. Study of the guiding water performance of F10 fault in Tongting colliery[J]. Coal Technology,2003,22(9):106-107.

[4] 胡宝林,宋晓梅,车遥,等. 刘桥矿区多期构造复合断层导水性分析[J]. 煤炭科学技术,2002,30(8):50-53. HU Baolin,SONG Xiaomei,CHE Yao,et al. Analysis on water conductivity of multiperiod structural complex fault in Liuqiao mining area[J]. Coal Science and Technology,2002,30(8):50-53.

[5] 王强,曹代勇. 皖北刘桥一矿边界断层富导水性及其成因机制[J]. 煤炭工程,2009,41(2):72-74. WANG Qiang,CAO Daiyong. Rich water conductivity and cause mechanism of fault at boundary of Wanbei Liuqiao No.1 mine[J]. Coal Engineering,2009,41(2):72-74.

[6] 吴基文,翟晓荣,沈书豪,等. 淮北桃园煤矿北八采区太原组灰岩含水层放水试验与监测成果分析[J]. 中国地质灾害与防治学报,2015,26(4):75-81. WU Jiwen,ZHAI Xiaorong,SHEN Shuhao,et al. Analysis of draining test and monitoring result of limestone of Taiyuan Formation of the eighth mining area in the north of Taoyuan coal mine in Huaibei[J]. The Chinese Journal of Geological Hazard and Control,2015,26(4):75-81.

[7] 邵东梅. 带压开采矿井导水断层探查与治理技术[J]. 煤矿安全,2015,46(6):133-135. SHAO Dongmei. Inspection and control technology for mine water conductive fault mining under pressure[J]. Safety in Coal Mines,2015,46(6):133-135.

[8] 路拓,刘盛东,王勃. 综合矿井物探技术在含水断层探测中的应用[J]. 地球物理学进展,2015,30(3):1371-1375. LU Tuo,LIU Shengdong,WANG Bo. Application of integrated mining geophysical method in detection of water-bearing faults[J]. Progress in Geophysics,2015,30(3):1371-1375.

[9] 王连元. 断层裂隙水的天然电场动态响应特征[J]. 煤田地质与勘探,2012,40(1):76-78. WANG Lianyuan. The natural electric field dynamic characters of fracture water in fault[J]. Coal Geology & Exploration,2012,40(1):76-78.

[10] 王广才,段琦,卜昌森,等. 水文地球化学方法在煤矿水害研究中的某些应用:以平顶山、肥城矿区研究为例[J]. 地质论评,2001,47(6):653-657. WANG Guangcai,DUAN Qi,PU Changsen,et al. Applications of hydrogeochemical methods to the study of groundwater hazards at the Pingdingshan and Feicheng coal mines,China[J]. Geological Review,2001,47(6):653-657.

[11] 张胜军,丁亚恒,姜春露. 深部矿井大型边界断层导水性试验研究[J]. 矿业研究与开发,2017,37(10):11-14. ZHANG Shengjun,DING Yaheng,JIANG Chunlu. Experimental research on the water transmissibility of large-scale boundary fault in deep mine[J]. Mining Research and Development,2017,37(10):11-14.

[12] 崔芳鹏,武强,刘守强. 霍州干河井田南北边界断层导水性测试分析[J]. 矿业安全与环保,2019,46(2):98-102. CUI Fangpeng,WU Qiang,LIU Shouqiang. Testing and analysis of the water conductivity of the north-south boundary fault in Huozhou Ganhe mine field[J]. Mining Safety & Environmental Protection,2019,46(2):98-102.

[13] GASTMANS D,CHANG H K,HUTCHEON I. Groundwater geochemical evolution in the northern portion of the Guarani aquifer system(Brazil) and its relationship to diagenetic features[J]. Applied Geochemistry,2010,25(1):16-33.

[14] 王广才,段琦,常永生. 矿井水害防治中的水文地球化学探查方法[J]. 中国地质灾害与防治学报,2000,11(1):36-40. WANG Guangcai,DUAN Qi,CAHNG Yongsheng. Hydrogeochemical exploration method in mine water disaster prevention and control[J]. The Chinese Journal of Geological Hazard and Control,2000,11(1):36-40.

[15] 武亚遵,潘春芳,林云,等. 鹤壁矿区奥陶系灰岩地下水水文地球化学特征及反向模拟[J]. 水资源与水工程学报,2018,29(4):25-32. WU Yazun,PAN Chunfang,LIN Yun,et al. Hydrogeochemical characteristics and its reverse simulation of Ordovician limestone groundwater in Hebi mining area[J]. Journal of Water Resources & Water Engineering,2018,29(4):25-32.

[16] 袁建飞,邓国仕,徐芬,等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质,2016,43(1):12-21. YUAN Jianfei,DENG Guoshi,XU Fen,et al. Hydrogeochemical characteristics of karst groundwater in the northern part of the city of Bijie[J]. Hydrogeology & Engineering Geology,2016,43(1):12-21.

[17] TAHOORA S N,FIRUZ R M,ZAHARIN A A,et al. Identification of the Hydrogeochemical Processes in groundwater using classic integrated geochemical methods and geostatistical techniques,in Amol-Babol plain,Iran[J]. The Scientific World Journal,2014,2014:1-15.

[18] 王晓曦,王文科,王周锋,等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质,2014,41(1):25-33. WANG Xiaoxi,WANG Wenke,WANG Zhoufeng,et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe river,northeastern China[J]. Hydrogeology & Engineering Geology,2014,41(1):25-33.

[19] 陈陆望,刘鑫,殷晓曦,等. 采动影响下井田主要充水含水层水化学环境演化分析[J]. 煤炭学报,2012,37(增刊2):362-367. CHEN Luwang,LIU Xin,YIN Xiaoxi,et al. Analysis of hydrochemical environment evolution in main discharge aquifers under mining disturbance in the coal mine[J]. Journal of China Coal Society,2012,37(S2):362-367.

[20] 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京:中国地质大学(北京),2012. XING Lina. Groundwater hydrochemical characteristics and hydrogeochemical processes approximately along flow paths in the North China plain[J]. Beijing:China University of Geosciences(Beijing),2012.

[21] 郭钰颖,吕智超,王广才,等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探,2016,44(6):101-105. GUO Yuying,LYU Zhichao,WANG Guangcai,et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration,2016,44(6):101-105.

[22] 余世滔,许光泉,张海涛,等. 深埋单斜条件下碳酸岩含水层水文地质特征研究[J]. 地下水,2018,40(6):1-4. YU Shitao,XU Guangquan,ZHANG Haitao,et al. Hydrogeological characteristics of carbonatite aquifer under deep buried monoclinic strata condition[J]. Ground Water,2018,40(6):1-4.

[23] 韩永,刘德民,尹尚先,等. 兖州矿区深部奥灰水反向水文地球化学模拟研究[J]. 煤炭工程,2016,48(2):87-90. HAN Yong,LIU Demin,YIN Shangxian,et al. Study on inverse hydrogeochemical modeling of deep Ordovician limestone groundwater in Yanzhou mining area[J]. Coal Engineering,2016,48(2):87-90.

[24] 黄平华,陈建生,宁超,等. 焦作矿区地下水水化学特征及其地球化学模拟[J]. 现代地质,2010,24(2):369-376. HUANG Pinghua,CHEN Jiansheng,NING Chao,et al. Hydrochemical characteristics and hydrogeochemical modeling of groundwater in the Jiaozuo mining district[J]. Geoscience,2010,24(2):369-376.

[25] 杨婷婷,许光泉,余世滔,等. 煤层下部太原组岩溶水化学组分特征及其成因分析[J]. 水文地质工程地质,2019,46(2):100-108. YANG Tingting,XU Guangquan,YU Shitao,et al. An analysis of the chemical composition characteristics and formation of the karst groundwater in the lower part of a coal seam[J]. Hydrogeology & Engineering Geology,2019,46(2):100-108.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.