Coal Geology & Exploration
Abstract
The study of the multi-target seams drainage effect on coalbed methane wells has great value, including coal safe mining, underground gas control, determination of development technical indicators, single well production, rational division of development layer, efficient development of coalbed methane, and development of medium and long-term coalbed methane development planning. Taking Chengzhuang mine of Jincheng as an example, the sampling data of the extraction effect in the middle and late stages of development are compared with the original gas content of the adjacent wells to evaluate the extraction effect, and the main control factors affecting the drainage effect are analyzed by combining the geological data and the on-site drainage data. According to the comprehensive analysis, it has been found that the No.15 coal seam has gas content lower than that of the No.3 and No.9 coal seams through surface coalbed methane extraction after several years. The analysis showed that the main influence factors for the rapid reduction of gas content of No.15 coal seam in Chengzhuang mining area include the coal gas content, permeability, liquid supply capacity, reservoir pressure in coal seam and producing measures, which provide a scientific basis for the prediction of remaining reserves.
Keywords
coalbed methane, drainage effect, multi-layers drainage, permeability, Chengzhuang mine, Jincheng
DOI
10.3969/j.issn.1001-1986.2019.06.005
Recommended Citation
YANG Jianchao, LI Guihong, LIU Yuhui,
et al.
(2019)
"Evaluation of coalbed methane drainage effect for multi-target seams in Jincheng region,"
Coal Geology & Exploration: Vol. 47:
Iss.
6, Article 6.
DOI: 10.3969/j.issn.1001-1986.2019.06.005
Available at:
https://cge.researchcommons.org/journal/vol47/iss6/6
Reference
[1] AYOUB J,COLSON L,HINKEL J,et al. Learning to produce coalbed methane[R]. Schlumberger Oil Field Review,1991:27-37.
[2] 王晓梅,张群,张培河,等. 煤层气储层数值模拟研究的应用[J]. 天然气地球科学,2004,15(6):664-668. WANG Xiaomei,ZHANG Qun,ZHANG Peihe,et al. Application of coalbed methane reservoir simulation[J]. Natural Gas Geoscience,2004,15(6):664-668.
[3] 张亚蒲,张冬丽,杨正明,等. 煤层气定向羽状水平井数值模拟技术应用[J]. 天然气工业,2006,26(12):115-117. ZHANG Yapu,ZHANG Dongli,YANG Zhengming,et al. The application of pinnate horizontal multilateral well numerical simulation technology[J]. Natural Gas Industry,2006,26(12):115-117.
[4] 闫岩. 沁南区块煤层气数值模拟及开发方案研究[D]. 大庆:东北石油大学,2015.
[5] 降文萍. 地面煤层气开发残余气含量研究[R]. 西安:中煤科工集团西安研究院,2011.
[6] 李贵红. 河煤矿东五盘区和西二盘区煤层气地面抽采效果评价[R]. 西安:中煤科工集团西安研究院有限公司,2015.
[7] 郝春生. 成庄井田西部煤层气产能主要地质影响因素[J]. 能源与节能,2016(3):5-6. HAO Chunsheng. On the main geological influence factors of coalbed methane production capacity in the western of Chengzhuang minefield[J]. Energy and Energy Conservation,2016(3):5-6.
[8] 康永尚,赵群,王红岩,等. 煤层气井开发效率及排采制度的研究[J]. 天然气工业,2007,27(7):79-82. KANG Yongshang,ZHAO Qun,WANG Hongyan,et al. Developing efficiency and the working system of wells during the de-watering gas production process in coalbed methane reservoirs[J]. Natural Gas Industry,2007,27(7):79-82.
[9] 卢长生. 垂直压裂井和水平井产气量的计算方法[J]. 中国煤层气,2006,3(4):10-13. LU Changsheng. A method for computation of gas production from CBM vertical fracturing and horizontal wells[J]. China Coalbed Methane,2006,3(4):10-13.
[10] 李文桃. 成庄煤层气区块15号煤层气储层物性及特征研究[J]. 江西煤炭科技,2018(2):8-11. LI Wentao. Research on physical properties and charac-teristics of No.15 coalbed gas reservoir in Chengzhuang CBM block[J]. Jiangxi Coal Science & Technology,2018(2):8-11.
[11] 赵春. 成庄区块3号煤层煤层气储层特征[J]. 煤,2017,26(3):12-14. ZHAO Chun. Chengzhuang block No.3 coal seam of coalbed methane reservoir characteristics[J]. Coal,2007,26(3):12-14.
[12] 王占磊,曾勇,吴财芳. 山西晋城矿区成庄井田3号煤储层的物性研究[J]. 江苏地质,2007(1):30-33. WANG Zhanlei,ZENG Yong,WU Caifang. Research on characteristics of third coalbed reservoir in Chengzhuang mine,Jincheng coalfield of Shanxi Province[J]. Jiangsu Geology,2007(1):30-33.
[13] 孟召平,郝海金,张典坤,等. 晋城成庄井田煤层气直井开发后煤层底板突水危险性评价[J]. 煤炭学报,2014,39(9):1899-1906. MENG Zhaoping,HAO Haijin,ZHANG Diankun,et al. Assessment of water inrush risk of coal floor after CBM development using vertical wells at Chengzhuang mine field in Jincheng[J]. Journal of China Coal Society,2014,39(9):1899-1906.
[14] 秦勇,张政,白建平,等. 沁水盆地南部煤层气井产出水源解析及合层排采可行性判识[J]. 煤炭学报,2014,39(9):1892-1898. QIN Yong,ZHANG Zheng,BAI Jianping,et al. Source apportionment of produced-water and feasibility dis-crimination of commingling CBM production from wells in southern Qinshui basin[J]. Journal of China Coal Society,2014,39(9):1892-1898.
[15] 毕伟伟. 晋煤成庄井田煤储层特征及其对煤层气成藏的控制[J]. 现代工业经济和信息化,2016,6(7):57-59. BI Weiwei. Coal reservoir characteristics and CBM reservoir formation control of Chengzhuang coal mine[J]. Modern Industrial Economy and Informationization,2016,6(7):57-59.
[16] 耿铁鑫,孙仁远,王世辉. 煤层气水力压裂工艺技术[J]. 大庆石油地质与开发,2015,34(6):171-174. GENG Tiexin,SUN Renyuan,WANG Shihui. Technologies and operating techniques of the hydraulic fracturing for coalbed methane(CBM)[J]. Petroleum Geology & Oilfield Development in Daqing,2015,34(6):171-174.
[17] 陈同刚,汪启年,朱将波,等. 煤层及其顶、底板岩石力学性质对水力压裂裂缝延伸的控制[J]. 华东地质,2018,39(3):212-217. CHEN Tonggang,WANG Qinian,ZHU Jiangbo,et al. Control of mechanical properties of coal seam and its roof and floor rocks over the crack extension during hydraulic fracturing[J]. East China Geology,2018,39(3):212-217.
[18] 单学军,张士诚,李安启,等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业,2005,25(1):130-132. SHAN Xuejun,ZHANG Shicheng,LI Anqi,et al. Analyzing the fracture extended law of hydraulic fracturing in coalbed gas wells[J]. Natural Gas Industry,2005,25(1):130-132.
[19] 郭大立,纪禄军,赵金洲,等. 煤层压裂裂缝三维延伸模拟及产量预测研究[J]. 应用数学和力学,2001,22(4):337-344. GUO Dali,JI Lujun,ZHAO Jinzhou,et al. 3D fracture propagation simulation and production prediction in coalbed[J]. Applied Mathematics and Mechanics,2001,22(4):337-344.
[20] 周洪. 关于煤层露头渐变为粘土岩的形成机理研究[J]. 科技传播,2011(18):76-77. ZHOU Hong. Study on the formation mechanism gradually from coal seam outcrop to clay rock[J]. Public Communication of Science & Technology,2011(18):76-77.
[21] 马兵. 多煤层地区煤层气合层排采理论研究[D]. 焦作:河南理工大学,2016.
[22] 孙鹏杰,姚文涛,孙宁,等. 多层叠置含煤层气系统不同排采制度下的排采效应[J]. 中国煤炭地质,2014,26(12):33-35. SUN Pengjie,YAO Wentao,SUN Ning,et al. Drainage effects of multiple superimposed CBM systems under different drainage systems[J]. Coal Geology of China,2014,26(12):33-35.
[23] 贾晋生,魏国琴. 成庄井田低产煤层气井排采参数分析[J]. 煤,2017,26(8):17-18. JIA Jinsheng,WEI Guoqin. Study on drainage parameters of low-yield coalbed methane wells in Chengzhuang block[J]. Coal,2017,26(8):17-18.
[24] 李金海,苏现波,林晓英,等. 煤层气井排采速率与产能的关系[J]. 煤炭学报,2009,34(3):376-380. LI Jinhai,SU Xianbo,LIN Xiaoying,et al. Relationship between discharge rate and productivity of coalbed methane wells[J]. Journal of China Coal Society,2009,34(3):376-380.
[25] 武玺. 寺河西区煤层气垂直井分层压裂合层排采的研究[J]. 山西煤炭,2016,36(2):75-78. WU Xi. Design of separate layer fracturing and combined layer discharge and mining in CBM vertical well in Sihe mine[J]. Shanxi Coal,2016,36(2):75-78.
[26] 傅雪海,葛燕燕,梁文庆,等. 多层叠置含煤层气系统递进排采的压力控制及流体效应[J]. 天然气工业,2013,33(11):35-39. FU Xuehai,GE Yanyan,LIANG Wenqing,et al. Pressure control and fluid effect of progressive drainage of multiple superposed CBM systems[J]. Natural Gas Industry,2013,33(11):35-39.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons