Coal Geology & Exploration
Abstract
Hydrodynamic dispersion coefficient is an important parameter in the study of solute transport in groundwater. In order to understand the transport law of pollutants in groundwater, the particle swarm optimization(PSO) algorithm based on bionic principle is used to solve the hydrodynamic dispersion coefficient of phreatic aquifer under natural flow field in the dispersion test site of Jiang'an Campus of Sichuan University. Compared with the least-square method and the standard curve comparison method, the results show that the results of the standard curve method are subject to subjective influence, and the errors are relatively large. The results of least square method fit well with the measured data, but the calculation process is relatively complex. Particle swarm optimization(PSO) is a reliable solution method, has the highest accuracy, faster calculation, good convergence and stability.
Keywords
hydrodynamic dispersion coefficient, particle swarm optimization algorithm, groundwater pollution, dispersion experiment, phreatic aquifer
DOI
10.3969/j.issn.1001-1986.2019.06.016
Recommended Citation
MEI Jie, LI Guangwei, XIA Chengcheng,
et al.
(2019)
"Particle swarm optimization-based bionic principle for solving hydrodynamic dispersion coefficient in Jiang'an Campus,"
Coal Geology & Exploration: Vol. 47:
Iss.
6, Article 17.
DOI: 10.3969/j.issn.1001-1986.2019.06.016
Available at:
https://cge.researchcommons.org/journal/vol47/iss6/17
Reference
[1] 吴耀国,田春声,李云峰,等. 判定地下水二维水动力弥散参数的直线图解法[J]. 煤田地质与勘探,1997,25(2):33-35. WU Yaoguo,TIAN Chunsheng,LI Yunfeng,et al. The linear graphic method for discriminating two-dimensional hydrodynamic dispersion parameter of underground water[J]. Coal Geology & Exploration,1997,25(2):33-35.
[2] 刘兆昌. 地下水系统的污染与控制[M]. 北京:中国环境科学出版社,1991.
[3] 张富仓,康绍忠,潘英华. 饱和-非饱和土壤中吸附性溶质水动力弥散实验研究[J]. 水利学报,2002,16(3):84-90. ZHANG Fucang,KANG Shaozhong,PAN Yinghua. Experimental study on hydrodynamic dispersion of adsorption solute in saturated-unsaturated soil[J]. Journal of Water Resources,2002,16(3):84-90.
[4] 张宇峰,张雪英,徐炎华,等. 土壤中水动力弥散系数的研究进展[J]. 环境污染治理技术与设备,2003(7):8-12. ZHANG Yufeng,ZHANG Xueying,XU Yanhua,et al. Progress in study of hydrodynamic dispersion coefficient in soil[J]. Techniques and Equipment for Environmental Pollution Control,2003(7):8-12.
[5] 李世钰,刘国东,王亮,等. 基于蝙蝠算法的适线法求解水动力弥散系数[J]. 煤田地质与勘探,2016,44(4):81-85. LI Shiyu,LIU Guodong,WANG Liang,et al. Computation of hydrodynamic dispersion coefficient with curve fitting method based on bat algorithm[J]. Coal Geology & Exploration,2016,44(4):81-85.
[6] ZOU S,PARR A. Estimation of dispersion parameters for two-dimensional plumes[J]. Ground Water,1993,31(3):389-392.
[7] 曹剑锋,迟宝明,王文科,等. 专门水文地质学[M]. 北京:科学出版社,2006.
[8] 陈崇希,李国敏. 地下水溶质运移理论及模型[M]. 武汉:中国地质大学出版社,1996.
[9] 王永峰. 求解半无限长多孔介质柱体水动力弥散系数的一种最小二乘法[J]. 地下水,2010,32(3):6-8. WANG Yongfeng. The least square method gaining the hydrodynamic dispersion coefficient of the semi-infinite pore medium cylinder[J]. Groundwater,2010,32(3):6-8.
[10] EBERHART R C,KENNEDY J. A new optimizer using particles swarm theory[C]//Proceed Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:87-92.
[11] KENNEDY J,EBERHART R C. Particle swarm optimiza-tion[C]//IEEE International Conference on Neural Network,Perth,Australia,1995:168-173.
[12] 李雅琼. 基于粒子群算法的遗传算法优化研究[J]. 兰州文理学院学报(自然科学版),2017,31(1):55-60. LI Yaqiong. Research of genetic algorithm based on particle swarm optimization[J]. Journal of Lanzhou College of Arts and Sciences(Natural Science Edition),2017,31(1):55-60.
[13] 刘岩磊,王庆来. 不同流场情况下地下水弥散试验方法分析[J]. 地下水,2014,36(2):10-13. LIU Yanlei,WANG Qinglai. Analysis of groundwater dispersion test methods for different flow fields[J]. Groundwater,2014,36(2):10-13.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons