•  
  •  
 

Coal Geology & Exploration

Abstract

In order to study the spatial distribution of groundwater in Huainan coalfield and the intensity of various hydrochemical actions, the coalfied is divided into the northern district with thicker loose beds and the southern district with thinner loose beds. Hydrochemical test data of main water-inrushing aquifers in 16 mines in these two areas were collected and statistically analyzed, ion combination method and Gibbs diagram were used to study the groundwater hydrochemical characteristics of each aquifer in north and south areas. The results indicate that TDS of aquifer is positively correlated with the burial thickness of unconsolidated formation. With the increase of the thickness of unconsolidated formation, the formation of hydrochemical components such as desulfurization, concentrated crystallization and cation alternating adsorption is enhanced, which makes SO42- consume continuously to form HCO3-, resulting in the precipitation of HCO3- bound Ca2+, Mg2+, and finally the formation of highly mineralized groundwater dominated by Cl-Na.

Keywords

Huainan coalfield, hydrochemical characteristics, groundwater, formation of hydrochemical constituents

DOI

10.3969/j.issn.1001-1986.2019.05.006

Reference

[1] 孙林华,桂和荣. 皖北桃源矿深部含水层地下水地球化学数理统计分析[J]. 煤炭学报,2013,38(增刊2):442-447. SUN Linhua,GUI Herong. Statistical analysis of deep groundwater geochemistry from Taoyuan coal mine,northern Anhui Province[J]. Journal of China Coal Society,2013,38(S2):442-447.

[2] 郭钰颖,吕智超,王广才,等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探,2016,44(6):101-105. GUO Yuying,LYU Zhichao,WANG Guangcai,et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration,2016,44(6):101-105.

[3] 陈陆望,许冬清,殷晓曦,等. 华北隐伏型煤矿区地下水化学及其控制因素分析:以宿县矿区主要突水含水层为例[J]. 煤炭学报,2017,42(4):996-1004. CHEN Luwang,XU Dongqing,YIN Xiaoxi,et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China:A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society,2017,42(4):996-1004.

[4] 桂和荣. 皖北矿区地下水水文地球化学特征及判别模式研究[D]. 合肥:中国科学技术大学,2005.

[5] 黄平华,陈建生. 焦作矿区地下水水化学特征及涌水水源判别的FDA模型[J]. 煤田地质与勘探,2011,39(2):42-46. HUANG Pinghua,CHEN Jiansheng. The chemical features of ground water and FDA model used to distinguish source of water burst in Jiaozuo mine area[J]. Coal Geology & Exploration,2011,39(2):42-46.

[6] 鲁金涛,李夕兵,宫凤强,等. 基于主成分分析与Fisher判别分析法的矿井突水水源识别方法[J]. 中国安全科学学报,2012,22(7):109-115. LU Jintao,LI Xibing,GONG Fengqiang,et al. Recognizing of mine water inrush sources based on principal components analysis and Fisher discrimination analysis method[J]. China Safety Science Journal,2012,22(7):109-115.

[7] 武亚遵,潘春芳,林云,等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报,2018,37(5):191-199. WU Yazun,PAN Chunfang,LIN Yun,et al. Hydro-geochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information,2018,37(5):191-199.

[8] 钱会. 水文地球化学[M]. 北京:地质出版社,2005.

[9] 殷晓曦,许光泉,桂和荣,等. 系统聚类逐步判别法对皖北矿区突水水源的分析[J]. 煤田地质与勘探,2006,34(2):58-61. YIN Xiaoxi,XU Guangquan,GUI Herong,et al. Analyzing for sources of inrush-water in Wanbei mining area by systemic clustering and stepwise distinguishing[J]. Coal Geology & Exploration,2006,34(2):58-61.

[10] 张恒星,张翼龙,李政红,等. 基于主导离子分类的呼和浩特盆地浅层地下水化学特征研究[J]. 干旱区资源与环境,2019,33(4):189-195. ZHANG Hengxing,ZHANG Yilong,LI Zhenghong,et al. Chemical characteristics of shallow groundwater in Hohhot basin[J]. Journal of Arid Land Resources and Environment,2019,33(4):189-195.

[11] 张磊,刘耀炜,任宏微,等. 水化学分析方法在地下水异常核实中的应用[J]. 地震,2019,39(1):29-38. ZHANG Lei,LIU Yaowei,REN Hongwei,et al. Application of hydrochemistry to the verification of groundwater anomalies[J]. Earthquake,2019,39(1):29-38.

[12] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088-1090.

[13] 王勇,曹丽文,刘勇,等. 淮北某矿区地下水环境质量评价[J]. 煤田地质与勘探,2011,39(2):34-37. WANG Yong,CAO Liwen,LIU Yong,et al. Groundwater environmental quality assessment for a mine area in Huaibei[J]. Coal Geology & Exploration,2011,39(2):34-37.

[14] 马雷,钱家忠,赵卫东. 基于GIS的地下水化学类型空间分区方法[J]. 煤炭学报,2012,37(3):490-494. MA Lei,QIAN Jiazhong,ZHAO Weidong. GIS-based ap-proaches for spatially dividing groundwater chemical types[J]. Journal of China Coal Society,2012,37(3):490-494.

[15] 吕玉广. 矿井水化学数据管理与综合应用实例[J]. 煤田地质与勘探,2017,45(4):107-111. LYU Yuguang. Example of mine water chemical data management and comprehensive application[J]. Coal Geology & Exploration,2017,45(4):107-111.

[16] 周小平,张春雷,马济国,等. 淮南巨厚新生界多含水层组地下水系统特征[J]. 合肥工业大学学报(自然科学版),2016,39(12):1693-1697. ZHOU Xiaoping,ZHANG Chunlei,MA Jiguo,et al. Characteristics of multiple aquifers groundwater system in hugely thick Cenozoic stratum in Huainan[J]. Journal of Hefei University of Technology(Natural Science),2016,39(12):1693-1697.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.