Coal Geology & Exploration
Abstract
Materials Studio(MS) software was used to establish a slit pore molecular model which considers the in-teractions among water-bearing coal, foam agent and foam stabilizer. Based on molecular diffusion theory, the diffusion ability of methane molecule respectively affected by four common foam agents and four foam stabilizers was calculated. Compared to original water-bearing coal, self-diffusion coefficient of coalbed methane(CBM) is reduced by 71.3%, 74.7%, 56.3%, 54.0% after adding foaming agents including sodium dodecyl sulfonate(SDS), sodium lauryl sulfate(SLS), sodium dodecyl benzene sulfonate(SDBS) and lycine respectively. Based on adding SDBS into water-bearing coal, the self-diffusion coefficient of CBM is further reduced by 63.2%, 57.9%, 55.3% and 71.1% after adding PAM, PVA, PEG and CMC respectively. It shows that foaming agent plays the most important role in reducing diffusion ability of CBM, and the use of foam stabilizer can further decrease the diffusion ability. Influenced by foam agent and foam stabilizer simultaneously, the self-diffusion coefficient of CBM can even drop more than 80%, which is adverse to CBM exploitation. Consequently, foaming and stabilizing performance of foam fracturing fluid should be guaranteed and the formation damage should be reduced through improving the molecular structure of foam agent and controlling its usage amount. On the other hand, foam stabilizer is not recommended to be used in coalbed.
Keywords
coalbed methane, foam fracturing fluid, molecule simulation, foaming agent, foam stabilizer, diffusion coef-ficient
DOI
10.3969/j.issn.1001-1986.2019.05.013
Recommended Citation
YANG Zhaozhong, HAN Jinxuan, ZHANG Jian,
et al.
(2019)
"Molecular simulation of the influence of foam fracturing fluid additives on coalbed methane diffusion,"
Coal Geology & Exploration: Vol. 47:
Iss.
5, Article 14.
DOI: 10.3969/j.issn.1001-1986.2019.05.013
Available at:
https://cge.researchcommons.org/journal/vol47/iss5/14
Reference
[1] 路艳军,杨兆中,SHELEPOV V V,等. 煤层气储层压裂现状及展望[J]. 煤炭科学技术,2017,45(6):73-84. LU Yanjun,YANG Zhaozhong,SHELEPOV V.V,et al. Status and prospects of coalbed methane reservoir fracturing[J]. Coal Science and Technology,2017,45(6):73-84.
[2] 刘丽. 煤层气成为"十三五"规划新宠儿[J]. 中国石化,2016(6):84-85. LIU Li. Coalbed methane has become a hot favourite of China's 13th Five-Year Plan[J]. Sinopec,2016(6):84-85.
[3] 叶建平,杨兆中,夏日桂,等. 深煤层水力波及压裂技术及其在沁南地区的应用[J]. 天然气工业,2017,37(10):35-45. YE Jianping,YANG Zhaozhong,XIA Rigui,et al. Syn-chronous hydraulic conformance fracturing technology used for deep coal beds and its field application in the southern Qinshui basin[J]. Natural Gas Industry,2017,37(10):35-45.
[4] 原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计[J]. 煤田地质与勘探,2018,46(5):178-184. YUAN Junhong,CAO Liwen,FU Yutong. Optimal design of the parameters of U-shaped horizontal well for deep coalbed methane in southern Yanchuan[J]. Coal Geology & Exploration,2018,46(5):178-184.
[5] 朱庆忠,左银卿,杨延辉. 如何破解我国煤层气开发的技术难题:以沁水盆地南部煤层气藏为例[J]. 天然气工业,2015,35(2):106-109. ZHU Qingzhong,ZUO Yinqing,YANG Yanhui. How to solve the technical problems in the CBM development:A case study of a CBM gas reservoir in the southern Qinshui basin[J]. Natural Gas Industry,2015,35(2):106-109.
[6] 王理国,唐兆青,李玉魁,等. 煤层气井层内转向压裂技术研究与应用[J]. 煤田地质与勘探,2018,46(2):8-14. WANG Liguo,TANG Zhaoqing,LI Yukui,et al. Research and application of deflection fracturing technology in coalbed methane well[J]. Coal Geology & Exploration,2018,46(2):8-14.
[7] 张高群,肖兵,胡娅娅,等. 新型活性水压裂液在煤层气井的应用[J]. 钻井液与完井液,2013,30(2):66-68. ZHANG Gaoqun,XIAO Bin,HU Yaya,et al. The application of new active water fracturing fluid in coalbed methane wells[J]. Drilling Fluid & Completion Fluid,2013,30(2):66-68.
[8] 管保山,刘玉婷,刘萍,等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术,2016,44(5):11-17. GUAN Baoshan,LIU Yuting,LIU Ping,et al. Present situation and development of coalbed methane fracturing fluid[J]. Coal Science and Technology,2016,44(5):11-17.
[9] 陈海汇,范洪富,郭建平,等. 煤层气井水力压裂液分析与展望[J]. 煤田地质与勘探,2017,45(5):33-40. CHEN Haihui,FAN Hongfu,GUO Jianping,et al. Analysis and prospect on hydraulic fracturing fluid used in coalbed methane well[J]. Coal Geology & Exploration,2017,45(5):33-40.
[10] 吴建光,孙茂远,冯三利,等. 国家级煤层气示范工程建设的启示:沁水盆地南部煤层气开发利用高技术产业化示范工程综述[J]. 天然气工业,2011,31(5):9-15. WU Jianguang,SUN Maoyuan,FENG Sanli,et al. Good lessons from the state-level demonstration project of coalbed methane development:An overview of such hightech and commercial project in the southern Qinshui basin[J]. Natural Gas Industry,2011,31(5):9-15.
[11] 孙晗森,冯三利,王国强,等. 沁南潘河煤层气田煤层气直井增产改造技术[J]. 天然气工业,2011,31(5):21-23. SUN Hansen,FENG Sanli,WANG Guoqiang,et al. Stimulation technology of vertical coalbed methane gas wells in the Panhe CBM gas field,southern Qinshui basin[J]. Natural Gas Industry,2011,31(5):21-23.
[12] 李兆敏,吕其超,李松岩,等. 煤层低伤害氮气泡沫压裂液研究[J]. 中国石油大学学报(自然科学版),2013,37(5):100-106. LI Zhaomin,LYU Qichao,LI Songyan,et al. A nitrogen foam fluid with low formation damage for CBM fracturing treatment[J]. Journal of China University of Petroleum(Natural Science Edition),2013,37(5):100-106.
[13] 高波,康毅力,史斌,等. 压裂液对煤岩储层解吸-扩散性能的影响[J]. 煤田地质与勘探,2016,44(6):79-84. GAO Bo, KANG Yili,SHI Bin,et al. Effect of fracturing fluid on the desorption-diffusion property of coal[J]. Coal Geology & Exploration,2016,44(6):79-84.
[14] 杨帆,杨小华,王琳,等. 分子模拟技术在油田化学剂研究中的应用[J]. 中外能源,2015,20(8):46-50. YANG Fan,YANG Xiaohua,WANG Lin,et al. Applications of molecular simulation technology in oilfield chemical agents study[J]. Sino-Global Energy,2015,20(8):46-50.
[15] 韩金轩. 含水煤层中气体吸附、解吸-扩散的分子模拟研究[D].成都:西南石油大学,2015.
[16] 任红梅,孟庆春,范忠钰,等. 羟基化及硅烷化二氧化硅表面润湿行为的分子模拟[J]. 中国石油大学学报(自然科学版),2014(5):172-177. REN Hongmei,MENG Qingchun,FAN Zhongyu,et al. Molecular simulation of wetting behavior on hydroxylation and silanization SiO2 surface[J]. Journal of China University of Petroleum(Natural Science Edition),2014(5):172-177.
[17] 张廷山,何映颉,杨洋,等. 有机质纳米孔隙吸附页岩气的分子模拟[J]. 天然气地球科学,2017,28(1):146-155. ZHANG Tingshan,HE Yingjie,YANG Yang,et al. Molucular simulation of shale gas adsorption in organic-matter nanopores[J]. Natural Gas Geoscience,2017,28(1):146-155.
[18] SHARMA A,NAMSANI S,SINGH J K. Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores[J]. Molecular Simulation,2015,41(5/6):414-422.
[19] 相建华,曾凡桂,梁虎珍,等. CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J]. 中国科学:地球科学,2014(7):1418-1428. XIANG Jianhua,ZENG Fangui,LIANG Huzhen,et al. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Science China:Earth Sciences,2014(7):1418-1428.
[20] 周军平,鲜学福,李晓红,等. CO2/CH4在狭缝型孔内竞争吸附的分子模拟[J]. 煤炭学报,2010,35(9):1512-1517. ZHOU Junping,XIAN Xuefu,LI Xiaohong,et al. Molecular simulations of the competitive adsorption of carbon dioxide/methane in slit-shape pores[J]. Journal of China Coal Society,2010,35(9):1512-1517.
[21] 徐加放,付元强,田太行,等. 两种常用表面活性剂在砂岩表面吸附特性的分子模拟[J]. 西安石油大学学报(自然科学版),2012,27(5):50-53. XU Jiafang,FU Yuanqiang,TIAN Taihang,et al. The molecular simulation of adsorptive property of two common surfactants on the sandstone surface[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2012,27(5):50-53.
[22] 张德祥. 煤制油技术基础与应用研究[M]. 上海:上海科学技术出版社,2013.
[23] 殷开梁,邹定辉,杨波,等. Materials Studio软件涉及力场中氢键的研究[J]. 计算机与应用化学,2006,23(12):169-174. YIN Kailiang,ZOU Dinghui,YANG Bo,et al. Investigation of H-bonding for the related force fields in materials studio software[J]. Computers and Applied Chemistry,2006,23(12):169-174.
[24] KARASAWA N,GODDARD W A. Force fields,structures,and properties of polyvinylidene fluoride crystal[J]. Macromolecules,1992,25:7268-7281.
[25] HAN Jinxuan,BOGOMOLOV A K,MAKAROVA E Y,et al. Molecular simulation on adsorption and diffusion of CO2 and CH4 in moisture coals[J]. Energy & Fuels,2017,31(12):13528-13535.
[26] EWALD P P. Die berechnung optischer and elekrostatischer gitterpotentiale[J]. Annalen der Physik,1921,369(3):253-287.
[27] 何选明. 煤化学[M]. 北京:冶金工业出版社,2010:206-217.
[28] 李腾,吴财芳. 黔西织纳煤田华乐勘探区煤层气吸附性研究[J]. 煤炭科学技术,2013,1(4):100-103. LI Teng,WU Caifang. Study on adsorption of coalbed methane in Huale exploration zone of Zhina coalfield in west Guizhou[J]. Coal Science and Technology,2013,1(4):100-103.
[29] BUSCH A,GENSTERBLUM Y. CBM and CO2-ECBM related sorption processes in coal:A review[J]. International Journal of Coal Geology,2011,87(2):49-71.
[30] ALCAÑIZ-MONGE J,LINARES-SOLANO A,RAND B. Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers[J]. The Journal of Physical Chemistry B,2002,106(12):3209-3216.
[31] IIYAMA T,NISHIKAWA K,SUZUKI T,et al. Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction[J]. Chemical Physics Letters,1997,274(1/2/3):152-158.
[32] 杨兆中,徐鸿涛,付嫱,等. 基于分子模拟的煤层CH4解吸规律研究[J]. 油气藏评价与开发,2016,6(5):67-71. YANG Zhaozhong,XU Hongtao,FU Qiang,et al. CH4 desorption rule in coalbed based on molecule simulation[J]. Reservoir Evaluation and Development,2016,6(5):67-71.
[33] 宋金星,陈培红,王乾,等. 煤储层水基压裂液用表面活性剂的筛选实验[J]. 煤田地质与勘探,2017,45(6):79-83. SONG Jinxing,CHEN Peihong,WANG Qian,et al. Laboratory study on screening and optimizing surfactant of water-based fracturing fluid for coalbed methane reservoir[J]. Coal Geology & Exploration,2017,45(6):79-83.
[34] 郭丽梅,王亚丹,管保山,等. 泡沫压裂液稳定性及衰变机理研究[J]. 精细石油化工,2014,31(5):9-13. GUO Limei,WANG Yadan,GUAN Baoshan,et al. Study on stability and decay mechanism of foam fracturing fluid[J]. Speciality Petrochemicals,2014,31(5):9-13.
[35] 曹了然,张春煜,张鼎林,等. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报,2017,33(7):1354-1365. CAO Liaoran,ZHANG Chunyu,ZHANG Dinglin,et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules[J]. Acta Physico-Chimica Sinica,2017,33(7):1354-1365.
[36] 魏然. 正则系综下双黑膜系统热力学相行为的研究[D]. 合肥:中国科学技术大学,2013.
[37] 杨宇,郭春华,罗陶涛. 黏弹性表面活性剂在煤粉上的吸附性能研究[J]. 煤炭学报,2011,36(1):110-113. YANG Yu,GUO Chunhua,LUO Taotao. The adsorption properties of viscoelastic surfactant on coal powder[J]. Journal of China Coal Society,2011,36(1):110-113.
[38] 周珺,伊向艺,卢渊,等. 清洁压裂液对煤岩储层伤害的实验评价[J]. 科技导报,2015,33(4):72-75. ZHOU Jun,YI Xiangyi,LU Yuan,et al. Experimental and mechanism research of damage of clean fracturing fluids to coalbed methane[J]. Science & Technology Review,2015,33(4):72-75.
[39] 黄霞,郭丽梅,姚培正,等. 煤层气井清洁压裂液破胶剂的筛选[J]. 煤田地质与勘探,2009,37(2):26-28. HUANG Xia,GUO Limei,YAO Peizheng,et al. The se-lection of gel breaker for clearing fracturing fluid in CBM well[J]. Coal Geology & Exploration,2009,37(2):26-28.
[40] 杨兆中,何睿,师斌斌,等. 深煤层直井水力压裂难点剖析及技术对策[J]. 煤炭技术,2017,36(11):123-126. YANG Zhaozhong,HE Rui,SHI Binbin,et al. Difficulties analysis and technical strategies on hydraulic fracturing of deep coalbed methane vertical wells[J]. Coal Technology,2017,36(11):123-126.
[41] 杨兆中,彭鹏,张健,等. 煤层氮气泡沫压裂液研究与应用[J]. 油气藏评价与开发,2016,6(1):78-82. YANG Zhaozhong,PENG Peng,ZHANG Jian,et al. Research and application of nitrogen foam fracturing fluid in coalbed methane[J]. Reservoir Evaluation and Development,2016,6(1):78-82.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons