Coal Geology & Exploration


In order to investigate the influence of magmatic alteration on the occurrence characteristics of antimony in coal seam, 12 samples of magmatic magma and coal were collected from Wolonghu coal mine in Huaibei coalfield, Anhui Province, and the content of Sb was determined by atomic fluorescence spectrometry(AFS). The coal quality parameters are analyzed. The results are as follows:the coal in Wolonghu magmatic intrusion area has the characteristics of ultra-low volatile matter, medium ash content and ultra-low sulfur content. And the main forms of sulfur in coal are organic sulfur and pyrite sulfur. Under the influence of magmatic hydrothermal solution, ash in coal seam increases and volatile content decreases. The content of antimony in Wolonghu coal mine is obviously enriched, with an average of 10.48 mg/kg. The average content of Sb in the coal above the intrusive rock is obviously increased, and the content of Sb in the contact zone of coal and rock reaches the highest value(13.93 mg/kg). The antimony in magmatic altered coal mainly exists in the form of inorganic binding(r=0.74), while organic sulfur is negatively correlated with Sb in coal(r=-0.60). The magmatic intrusion resulted in the coal quality characteristics and the occurrence of antimony in Wolonghu coal mine. This result enriches the environmental geochemical study of antimony in coal under special geological process.


antimony(Sb), modes of occurrence, coal, magmatic intrusion, Wolonghu coal mine in Huaibei coalfield




[1] U S. Environmental Protection Agency (USEPA). Integrated risk information system(IRIS) on antimony[S]. National Center for Environmental Assessment,Office of Research and Development,Washington DC,1999.

[2] FILELLA M,BELZILE N,CHEN Y W. Antimony in the environment:A review focused on natural waters:I. Occurrence[J]. 2002,57(1/2):125-176.

[3] 齐翠翠,刘桂建,康彧,等. 锑在淮北芦岭矿区土壤和水体中的分布及其环境效应[J]. 地球环境学报,2011,2(2):350-355. QI Cuicui,LIU Guijian,KANG Yu,et al. Distribution of antimony in surfical environment of Luling coal mine in Huaibei,China[J]. Journal of Earth Environment,2011,2(2):350-355.

[4] FINKELMAN R B,BOSTICK N H,DULONG F T,et al. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado[J]. International Journal of Coal Geology,1988,36(3/4):223-241.

[5] 王运泉,莫洁云,任德贻. 梅田矿区岩浆热变煤中微量元素分布特征[J]. 地球化学,1999,28(3):289-296. WANG Yunquan,MO Jieyun,REN Deyi. Distribution of minor and trace elements in magmatic hydrothermal metamorphic coal of Meitian coal mine,Hunan Province[J]. Geochimica,1999,28(3):289-296.

[6] 郑刘根,刘桂建,齐翠翠,等. 淮北煤田煤中汞的赋存状态[J]. 地球科学,2007,32(2):279-284. ZHENG Liugen,LIU Guijian,QI Cuicui,et al. Study on modes of occurrence of mercury in coals from the Huaibei coalfield[J]. Earth Science,2007,32(2):279-284.

[7] 黄晓雨,郑刘根,张强伟,等. 卧龙湖煤矿岩浆蚀变煤层中汞的分布与赋存特征[J]. 高校地质学报,2015,21(2):280-287. HUANG Xiaoyu,ZHENG Liugen,ZHANG Qiangwei,et al. Distribution and modes of occurrence of mercury in coal seams altered by magmatic hydrothermal from Wolonghu coal mine[J]. Geological Journal of China Universities,2015,21(2):280-287.

[8] 冯松宝,余磊,车青松,等. 安徽省卧龙湖煤矿煤中过渡金属元素地球化学特征[J]. 中国煤炭地质,2015,27(4):8-10. FENG Songbao,YU Lei,CHE Qingsong,et al. Transition metal elements geochemical characteristics in coal from Wolonghu coalmine,Anhui Province[J]. Coal Geology of China,2015,27(4):8-10.

[9] 姜萌萌,刘桂建,吴斌,等. 卧龙湖煤矿岩浆侵入区煤中稀土元素的地球化学特征[J]. 中国科学技术大学学报,2012,42(1):10-16. JIANG Mengmeng,LIU Guijian,WU Bin,et al. Geochemistry of rare earth elements(REEs) in coal from magmatic intrusion area from Wolonghu coal mine[J]. Journal of University of Science and Technology of China,2012,42(1):10-16.

[10] YAN Zhicao,LIU Guijian,SUN Ruoyu,et al. Geochemistry of rare earth elements in ground water from the Taiyuan Formation limestone aquifer in the Wolonghu coal mine,Anhui Province,China[J]. Journal of Geochemical Exploration,2013,135:54-62.

[11] 刘英俊. 元素地球化学导论[M]. 北京:地质出版社,1987.

[12] QI Huawen,HU Ruizhong,ZHANG Qi. Concentration and distribution of trace elements in lignite from the Shengli coalfield,Inner Mongolia,China:Implications on origin of the associated Wulantuga germanium deposit[J]. International Journal of Coal Geology,2007,71(2/3):129-152.

[13] 庄新国,龚家强,王占岐,等. 贵州六枝、水城煤田晚二叠世煤的微量元素特征[J]. 地质科技情报,2001,20(3):53-58. ZHUANG Xinguo,GONG Jiaqiang,WANG Zhanqi,et al. Trace elements of the Late Permian coal in the Shuicheng and Liuzhi coal fields,Guizhou[J]. Geological Science and Technology Information,2001,20(3):53-58.

[14] 高向东,王延斌,张崇崇. 钻井中煤体结构特征与井壁稳定性分析研究[J]. 煤炭科学技术,2015,44(5):95-99. GAO Xiangdong,WANG Yanbin,ZHANG Chongchong. Study and analysis on coal structure features during drilling operation and well wall stability[J]. Coal Science and Technology,2015,44(5):95-99.

[15] 徐德金,胡宝林,胡巍. 淮北煤田卧龙煤矿岩浆侵入煤层的构造控制[J]. 煤田地质与勘探,2011,39(5):1-5. XU Dejin,HU Baolin,HU Wei. Geological structure controlling magmatic intrusions into coalbeds in the Wolong coalmine of Huaibei coalfield[J]. Coal Geology & Exploration,2011,39(5):1-5.

[16] JIANG Bo,QU Zhenghui,WANG G G X,et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield,China[J]. International Journal of Coal Geology,2010,82(3/4):175-183.

[17] 李园. 卧龙湖煤矿岩浆岩分布特征及岩浆侵入对煤层的影响研究[D]. 淮南:安徽理工大学,2010.

[18] RIMMER S M,YOKSOULIAN L E,HOWER J C. Anatomy of an intruded coal,I:Effect of contact metamorphism on whole-coal geochemistry,Springfield(No.5)(Pennsylvanian) coal,Illinois basin[J]. International Journal of Coal Geology,2009,79(3):74-82.

[19] WANG Ruwei,LIU Guijian. Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in eastern China[J]. Organic Geochemistry,2015,83/84(3):202-214.

[20] 齐翠翠,刘桂建,匡武. 锑在淮南煤中的分布特征与富集成因[J]. 中国煤炭地质,2016,28(12):9-13. QI Cuicui,LIU Guijian,KUANG Wu. Distribution features and enrichment causation of antimony in Huainan coal[J]. Coal Geology of China,2016,28(12):9-13.

[21] 白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007(1):1-4. BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007(1):1-4.

[22] SWAINE D J. Trace Elements in coal[M]. London:Butterworths,1990.

[23] QI Cuicui,LIU Guijian,CHOU Chenlin,et al.,Environmental geochemistry of antimony in Chinese coals[J]. Science of the Total Environment,2008,389(2):225-234.

[24] 孙若愚. 淮南朱集井田煤中微量元素含量分布规律及其应用[D]. 合肥:中国科学技术大学,2010.

[25] 任德贻. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.

[26] 汪文军,陈冰宇,丁典识,等. 淮南煤田潘三矿煤中钡、锰、镍的含量及其赋存状态[J]. 中国煤炭地质,2018,30(4):5-8. WANG Wenjun,CHEN Bingyu,DING Dianshi,et al. Content of barium,manganese and nickel in coal and their hosting state in Panji No.3 coalmine,Huainan coalfield[J]. Coal Geology of China,2018,30(4):5-8.

[27] 李立园,汤泉,郑刘根,等. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学,2018,37(3):437-444. LI Liyuan,TANG Quan,ZHENG Liugen,et al. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry,2018,37(3):437-444.

[28] 唐书恒,杨宁. 准格尔煤田串草圪旦煤矿5号煤中有害元素赋存状态与分布规律[J]. 中国煤炭地质,2017,29(9):1-6. TANG Shuheng,YANG Ning. Hazardous elements hosting state and distribution pattern in coal No.5,Jungar coalfield:A case study of Chuancaogedan coal mine[J]. Coal Geology of China,2017,29(9):1-6.

[29] 齐翠翠. 锑在中国煤及典型矿区中的环境地球化学研究[D]. 合肥:中国科学技术大学,2010.

[30] 刘胜军. 岩浆侵入对煤中微量元素赋存的影响[D]. 淮南:安徽理工大学,2014.

[31] LIU Guijian,YANG Pingyue,PENG Zicheng,et al. Pet-rographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams,Yanzhou mining area,China[J]. Journal of Asian Earth Sci-ences,2004,23(4):491-506.

[32] VASSILEV S V,KITANO K,VASSILEVA C G. Relations between ash yield and chemical and mineral composition of coals[J]. Fuel,1997,76(1):3-8.

[33] DAI Shifeng,REN Deyi,TANG Yuegang,et al. Con-centration and distribution of elements in Late Permian coals from western Guizhou Province,China[J]. International Journal of Coal Geology,2005,61(1/2):119-137.

[34] CHOU Chenlin. Origins and evolution of sulfur in coals[J]. Western Pacific Earth Sciences,2004,4(1):1-10.

[35] SKYLLBERG U,XIA Kang,BLOOM P R,et al. Binding of mercury(Ⅱ) to reduce sulfur in soil organic matter along up-land-peat soil transects[J]. Journal of Environmental Quality,2000,29(3):855-865.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.