•  
  •  
 

Coal Geology & Exploration

Abstract

In order to control the problem of water channeling in the process of coalbed methane(CBM) production, based on the self-designed test device and method, the test data of the shear strength at cement-aquiclude interface (CAI) is obtained under the conditions of well inclination of 0°, 30°, 60° and 90°. The mechanism of the influence of inclination angle on the shear strength at CAI is analyzed. The results show that the shear strength at CAI decreases with the increase of the inclination angle. The reason is that as the inclination angle increases, the upper part of the mud cake ring becomes thinner in turn, and the lower part becomes thicker in turn. When the inclination angle is 90°, the mud cake is thickest. As the mud cake thickens, the clay minerals in the mud cake is decreasing, and the content of drill cuttings and barite increase. Through the analysis it is also believed that the main factors affecting the shear strength at CAI are cohesion, moisture content, grain compaction, particle structure and mineral composition in the mud cake. Therefore, the CBM well type has a great influence on the hear strength at CAI. If the horizontal well is used to extract CBM, the problem of water channeling may be more prominent.

Keywords

coalbed methane well, inclination angle, shear strength at CAI, mud cake thickness, influence law

DOI

10.3969/j.issn.1001-1986.2019.03.032

Reference

[1] 郝志勇,岳立新,孙可明,等. 超临界CO2温变对低渗透煤层孔渗变化的实验研究[J]. 煤田地质与勘探,2018,46(3):64-71. HAO Zhiyong,YUE Lixin,SUN Keming,et al. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. Coal Geology & Exploration,2018,46(3):64-71.

[2] PENG C,ZOU C,YANG Y. Fractal analysis of high rank coal from southeast Qinshui basin by using gas adsorption and mercury porosimetry[J]. Journal of Petroleum Science and Engineering,2017,156:235-249.

[3] CAI Y D,LIU D M,YAO Y B,et al. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui basin,North China[J]. International Journal of Coal Geology,2011,88:101-12.

[4] XU H,TANG D Z,LIU D M,et al. Study on coalbed methane accumulation characteristics and favorable areas in the Binchang area,southwestern Ordos basin,China[J]. International Journal of Coal Geology,2012,95:1-11.

[5] LI L C,YANG T H,LIANG Z Z,et al. Numerical investigation of groundwater outbursts near faults in underground coal mines[J]. International Journal of Coal Geology,2011,85:276-88.

[6] 宋岩,张新民,柳少波. 中国煤层气地质与开采基础理论[M]. 北京:科学出版社,2012:492-524.

[7] 赵庆波,孙粉锦,李五忠,等. 煤层气成藏条件、开采特征及开发适用技术分析[C]//叶建平,傅小康,李五忠. 中国煤层气技术进展:2011年煤层气学术研讨会论文集. 北京:地质出版社,2011:10-22.

[8] 郝丽,段宝玉. 煤层中水对煤层气产量的影响[J]. 中国煤层气,2012,9(4):32-34. HAO Li,DUAN Baoyu. The impact of water in coal seam on CBM yield[J]. China Coalbed Methane,2012,9(4):32-34.

[9] 尹清奎,焦中华. 焦作某煤层气井田低产原因分析[J]. 中国煤层气,2012,9(3):16-19. YIN Qingkui,JIAO Zhonghua. Analysis of reasons for low yield of certain CBM well in Jiaozuo[J]. China Coalbed Methane,2012,9(3):16-19.

[10] 汪吉林,秦勇,傅雪海. 关于煤层气排采动态变化机制的新认识[J]. 高校地质学报,2012,18(3):583-588. WANG Jilin,QIN Yong,FU Xuehai. New insight into the methanism for dynamic coalbed methane drainage[J]. Geological Journal of China Universities,2012,18(3):583-588.

[11] 李沛涛,武强. 底板破坏型采煤工作面突水机理及治理技术[J]. 辽宁工程技术大学学报(自然科学版),2008,27(5):653-656. LI Peitao,WU Qiang. Water-inrush mechanism and government technique of working-face evoked by mining floor damage[J]. Journal of Liaoning Technical University(Natural Science Edition),2008,27(5):653-656.

[12] 汪宏志,胡宝林,徐德金. 基于GIS技术的煤层底板突水危险性综合评价[J]. 煤炭科学技术,2008,36(10):82-85. WANG Hongzhi,HU Baolin,XU Dejin. Comprehensive assessment on water inrush danger from mine seam floor base on GIS technology[J]. Coal Science and Technology,2008,36(10):82-85.

[13] 施龙青. 底板突水机理研究综述[J]. 山东科技大学学报,2009,28(3):17-23. SHI Longqing. Summary of research on mechanism of wa-ter-inrush from seam floor[J]. Journal of Shandong University of Science and Technology,2009,28(3):17-23.

[14] 李连崇,唐春安,李根,等. 含隐伏断层煤层底板损伤演化及滞后突水机理分析[J]. 岩土工程学报,2009,31(12):1838-1844. LI Lianchong,TANG Chun'an,LI Gen,et al. Damage evolution and delayed groundwater inrush from micro faults in coal seam floor[J]. Chinese Journal of Geotechnical Engineering,2009,31(12):1838-1844.

[15] 尹尚先. 煤层底板突水模式及机理研究[J]. 西安科技大学学报,2009,29(6):661-665. YIN Shangxian. Modles and mechanism for water inrushes from coal seam floor[J]. Journal of Xi'an University of Science and Technology,2009,29(6):661-665.

[16] 李伟利,叶丽萍. 基于板模型对采场底板破坏与突水机理研究[J]. 煤炭技术,2011,30(1):88-89. LI Weili,YE Liping. Study of floor failure and water-inrush mechanism based on plate modle[J]. Coal Technology,2011,30(1):88-89.

[17] 尹立明. 深部煤层开采底板突水机理基础实验研究[D]. 青岛:山东科技大学,2011:1-150.

[18] 原伟强. 焦村矿水文地质条件及二1煤底板突水危险性评价[D]. 焦作:河南理工大学,2011:1-69.

[19] 黄俊. 工作面底板突水机理研究[D]. 湘潭:湖南科技大学,2011:1-111.

[20] 孙建. 倾斜煤层底板破坏特征及突水机理研究[D]. 徐州:中国矿业大学,2011:1-169.

[21] 李峰. 深部煤层开采底板破坏特征研究[D]. 邯郸:河北工程大学,2012:1-67.

[22] 郭敬中. 承压岩溶水上采煤底板突水机理探讨[D]. 淮南:安徽理工大学,2012:1-81.

[23] 韩猛,王连国,罗吉安,等. 底板陷落柱突水力学机理研究及应用[J]. 矿业安全与环保,2012,39(4):12-13. HAN Meng,WANG Lianguo,LUO Ji'an,et al. Research on mechanism of water inrush from floor subsided column and its application[J]. Mining Safety & Environmental Protection,2012,39(4):12-13.

[24] MENG Z P,LI G Q,XIE X T. A geological assessment method of floor water inrush risk and its application[J]. Engineering Geology,2012,143:51-60.

[25] LI C P,LI J J,LI Z X,et al. Establishment of spatiotemporal dynamic model for water inrush spreading processes in underground mining operations[J]. Safety Science,2013,55:45-52.

[26] JIA J L,CAO L W,ZHANG J C,et al. 3D comprehensive advance exploration and prevention technology of mine wa-ter-inrush[J]. Journal of Mines,Metals and Fuels,2014,62:69-77.

[27] 张风达,孟祥瑞,高召宁. 煤层底板导升突水机理研究[J]. 矿业安全与环保,2013,40(2):1-4. ZHANG Fengda,MENG Xiangrui,GAO Zhaoning. Study on mechanism of floor water inrush induced by water rise along fractures[J]. Mining Safety and Environmental Protection,2013,40(2):1-4.

[28] 张文忠,虎维岳. 采场底板突水机理的跨层拱结构模型[J]. 煤田地质与勘探,2013,41(1):35-39. ZHANG Wenzhong,HU Weiyue. Structure modle of cross-layer arc of water-inrush mechanism of coal seam floor[J]. Coal Geology & Exploration,2013,41(1):35-39.

[29] 刘德民,连会青,李飞. 封闭不良钻孔侧壁突水机理研究[J]. 中国安全生产科学技术,2014,10(5):74-77. LIU Demin,LIAN Huiqing,LI Fei. Research on mechanism of water-inrush at side face of poor sealing borehole[J]. Journal of Safety Science and Technology,2014,10(5):74-77.

[30] 刘立平,任战利,胡光,等. 薄浅层稠油冷采开采工艺技术研究[J]. 西北大学学报(自然科学版),2008,38(2):290-300. LIU Liping,REN Zhanli,HU Guang,et al. Research and application of cold heavy oil production with sand technology[J]. Journal of Northwest University(Natural Science Edition),2008,38(2):290-300.

[31] 何俊才,肖海东,闫玉良,等. 固井弱界面及提高界面防窜能力技术研究[C]//孙宁. 2012年固井技术研讨会论文集. 北京:石油工业出版社,2012:82-88.

[32] 赵黎安,孟宪宝,党庆功,等. 钻屑与油井水泥的胶结特性[J]. 大庆石油学院学报,1996,20(2):90-93. ZHAO Li'an,MENG Xianbao,DANG Qinggong,et al. Bond properties of the interface between drilling cutting and oil well cement[J]. Journal of Daqing Petroleum Institute,1996,20(2):90-93.

[33] LYONS W C. Formulas and Calculations for Drilling,Productionand Workover[M]. USA:Gulf Publishing Company,2011:127-129.

[34] 顾军,秦磊斌,汤乃千,等. 煤层气井内隔水层界面水窜通道形成演化过程[J]. 中国矿业大学学报,2019,48(1):176-187. GU Jun,QIN Leibin,TANG Naiqian,et al. Evolution process of water channeling pathway along cement-aquifuge interface in coalbed methane well[J]. Journal of ChinaUniversity of Mining & Technology,2019,48(1):176-187.

[35] GU J,GAN P,DONG L F,et al. Prediction of water channeling along cement-aquifuge interface in CBM well:Model development and experimental verification[J]. Journal of Petroleum Science and Engineering,2019,173:536-546.

[36] 胡爱梅,陈东. 煤层气开采基础理论[M]. 北京:科学出版社,2015:110-112.

[37] 张天龙,屈俊瀛,霍仰春. 低固相聚合物钻井液在山西煤层气井中的应用[J]. 西安石油学院学报(自然科学版),2001,16(1):33-35. ZHANG Tianlong,QU Junying,HUO Yangchun. Application of low solids polymer drilling fluids to coalbed gas well[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2001,16(1):33-35.

[38] 秦磊斌,顾军,郝海洋. 一种室内实验用泥饼厚度精细控制装置:ZL201610396500.0[P]. 2018-09-04.

[39] GU J,ZHONG P,SHAO C,et al. Effect of interface defects on shear strength and fluid channeling at cement-interlayer interface[J]. Journal of PetroleumScience and Engineering,2012,100:117-122.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.