Coal Geology & Exploration
Abstract
The explosive source of underground seismic exploration in coal mines is greatly affected by the control of pyrotechnics and cannot realize the monitoring and early warning of dynamic geological disasters in coal mining. Seismic-while-mining(SWM) is a new technique based on shearer as a seismic source underground. The paper reviewed the research status of SWM technique at home and abroad, introduced the SWM's principle and its unique advantages. According to some pilot experiments of SWM, the results show that the shearer can be used as a seismic source because it has the character of strong excitation energy, wide frequency band, safety, green economy and repeatability, etc. The records of the shearer source and the explosive source are similar to each other, but the latter has higher S/N over the former. There is an urgent need of cooperation research in the key technologies such as seismic numerical simulation and big data dynamic processing. Although SWM is still in the experimental research stage, it will become an important means such as three-dimensional dynamic geological modeling for transparent working face, monitoring and warning of mining dynamic geological disaster, etc. This technology represents the development direction of intelligent detection technology of coal mine in the future.
Keywords
seismic-while-mining(SWM), vibroseis, shearer source, big data of SWM, smart mining
DOI
10.3969/j.issn.1001-1986.2019.03.001
Recommended Citation
CHENG Jianyuan, QIN Si, LU Bin,
et al.
(2019)
"The development of seismic-while-mining detection technology in underground coal mines,"
Coal Geology & Exploration: Vol. 47:
Iss.
3, Article 2.
DOI: 10.3969/j.issn.1001-1986.2019.03.001
Available at:
https://cge.researchcommons.org/journal/vol47/iss3/2
Reference
[1] 王国法,张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报,2018,47(3):459-467. WANG Guofa,ZHANG Desheng. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J]. Journal of China University of Mining & Technology,2018,47(3):459-467.
[2] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.
[3] 王保利,金丹. 矿井槽波地震数据处理系统GeoCoal软件开发与应用[J]. 煤田地质与勘探,2019,47(1):174-180. WANG Baoli,JIN Dan. Development and application of GeoCoal for in-seam seismic data processing[J]. Coal Geology & Exploration,2019,47(1):174-180.
[4] 程建远,江浩,姬广忠,等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术,2015,43(2):25-28. CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al. Channel wave seismic exploration technology based on node digital seismograph in underground mine[J].Coal Sci-ence and Technology,2015,43(2):25-28.
[5] 胡国泽,滕吉文,皮娇龙,等. 井下槽波地震勘探:预防煤矿灾害的一种地球物理方法[J]. 地球物理学进展,2013,28(1):0439-0451. HU Guoze,TENG Jiwen,PI Jiaolong,et al. In-seam seismic exploration techniques:A geophysical method predicting coal mine disaster[J]. Progress in Geophysics,2013,28(1):0439-0451.
[6] 徐明顺,付景刚,武晋文. 低瓦斯矿井爆破后炮烟吹散等待时间的界定[J]. 煤矿爆破,2019,37(1):23-26. XU Mingshun,FU Jinggang,WU Jinwen. Definition of waiting time for fume dispersion after low gas mine blasting[J]. Coal Mine Blasting,2019,37(1):23-26.
[7] 田成金. 煤炭智能化开采模式和关键技术研究[J]. 工矿自动化,2016,42(11):28-32. TIAN Chengjin. Research of intelligentized coal mining mode and key technologies[J]. Industry and Mine Automation,2016,42(11):28-32.
[8] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1-7. YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1-7.
[9] 周小慧,宋桂桥,张卫华,等. 随钻地震技术及其新进展[J]. 石油物探,2016,55(6):913-923. ZHOU Xiaohui,SONG Gui qiao,ZHANG Weihua,et al. Current research progress of seismic while drilling technology[J]. Geophysical Prospecting for Petroleum,2016,55(6):913-923.
[10] 乔勇虎,滕吉文,皮娇龙. 含小断层煤层Rayleigh型槽波波场和频散分析[J]. 地球物理学报,2018,61(12):4976-4987. QIAO Yonghu,TENG Jiwen,PI Jiaolong. Rayleigh channel wave field and dispersion of coal seams with small faults[J]. Chinese Journal of Geophysics,2018,61(12):4976-4987.
[11] 王悦,于水,王苏健,等. 微震监测技术在煤矿底板突水预警中的应用[J]. 煤炭科学技术,2018,46(8):68-73. WANG Yue,YU Shui,WANG Sujian,et al. Application of microseismic monitoring technology in water inrush warning of coal mine floor[J]. Coal Science and Technology,2018,46(8):68-73.
[12] 汪恩华,赵邦六,王喜双,等. 中国石油可控震源高效地震采集技术应用与展望[J]. 中国石油勘探,2013,18(5):24-34 WANG Enhua,ZHAO Bangliu,WANG Xishuang,et al. Application and outlook of vibroseis acquisition techniques with high efficiency of CNPC[J]. China Petroleum Exploration,2013,18(5):24-34.
[13] LU B,CHENG J,HU J,et al. Seismic features of vibration induced by mining machines and feasibility to be seismic sources[C]//2011 Xi'an International Conference on Fine Geological Exploration and Groundwater & Gas Hazards Control in Coal Mines. 2011:76-85.
[14] BUCHANAN D J,MASON I M,DAVIS R. The coal cutter as a seismic source in channel wave exploration[J]. IEEE Transactions on Geoscience and Remote Sensing,1980(4):318-320.
[15] WESTMAN E C,HARAMY K Y,ROCK A D. Seismic tomography for longwall stress analysis[J]. Rock Mechanics Tools and Techniques,1996:397-403.
[16] TAYLOR N,MERRIAM J,GENDZWILL D,et al. The mining machine as a seismic source for in-seam reflection mapping[C]//Proc. 71st SEG Annual. Meeting,Expanded Abstract. San Antonio,TX,2001:1365-1368.
[17] PETRONIO L,POLETTO F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics,2002,67(6):1798-1809.
[18] POLETTO F,PETRONIO L. Seismic interferometry with a TBM source of transmitted and reflected waves[J]. Geophysics,2006,71(4):SI85-SI93.
[19] XUN L,ANDREW K,MATT VAN DE W. Tomographic Imaging of rock conditions ahead of mining using the shearer as a seismic source:A feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3671-3678.
[20] HAUSER E C,HOWELL M,WOLFE P. Locating abandoned mines using the active mining operation as the seismic energy source-demonstration of a new method[R]. http://www.doc88.com/p-366148339936.html.
[21] ANDREW K,XUN L. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics,2009,74(2):1-8.
[22] 徐佩芬,李世豪,杜建国,等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报,2013,29(5):1841-1845. XU Peifeng,LI Shihao,DU Jianguo,et al. Microtremor survey method:A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica,2013,29(5):1841-1845.
[23] 史鸿祥,李辉,郑多明,等. 基于随钻地震测井的地震导向钻井技术:以塔里木油田哈拉哈塘区块缝洞型储集体为例[J]. 石油勘探与开发,2016,43(4):662-668. SHI Hongxiang,LI Hui,ZHENG Duoming,et al. Seismic guided drilling technique based on seismic while drilling(SWD):A case study of fracture-cave reservoirs of Halahatang block,Tarim oilfield,NW China[J]. Petroleum Exploration and Development,2016,43(4):662-668.
[24] 李丽、彭文涛、李刚,等. 可作为新振源的列车振动及实验研究[J]. 地球物理学报,2004,47(4):680-684. LI Li,PENG Wentao,LI Gang,et al. Vibration induced by trains:A new seismic source and relative test[J]. Chinese Journal of Geophysics,2004,47(4):680-684.
[25] 唐德林,马文琪,胡宗正,等. 被动震源进行地震勘探的可行性研究[J]. 中国煤炭地质,2008,20(2):46-48. TANG Delin,MA Wenqi,HU Zongzheng,et al. Feasibility study of seismic prospecting carried out through passive sources[J]. Coal Geology of China,2008,20(2):46-48.
[26] 陆斌,程建远,胡继武,等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报,2013,38(12):2202-2207. LU Bin,CHENG Jianyuan,HU JiWu,et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society,2013,38(12):2202-2207.
[27] 覃思,程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术,2015,43(1):116-119. QIN Si,CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology,2015,43(1):116-119.
[28] 程久龙,谢晨,孙晓云,等. 随掘地震超前探测理论与方法初探[C]//中国地球科学联合学术年会,2015:1765-1766.
[29] 覃思,程建远,胡继武,等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报,2015,40(3):636-639. QIN Si,CHENG Jianyuan,HU Jiwu,et al. Coal-seam-ground seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society,2015,40(3):636-639.
[30] 陆斌. 基于噪声地震干涉的煤矿工作面随采成像方法[J]. 煤田地质与勘探,2016,44(6):142-147. LU Bin. A Seismic interferometry-based seismic imaging while mining in coal working face[J]. Coal Geology & Exploration,2016,44(6):142-147.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons