•  
  •  
 

Coal Geology & Exploration

Abstract

Using self-made experimental system, experiments were performed on coal samples to study supercritical CO2 seepage, adsorption and CH4 displacement by supercritical CO2. Experimental results show that permeability and adsorption of supercritical CO2 in coal increase with CO2 pressures. Pressures and temperatures of CO2 influence the values of displaced CH4. Values of displaced CH4 increase by average 0.076 cm3/g and sweep efficiency rises by 17%-23% with the CO2 pressure increasing from 8 MPa to 12 MPa, while displacement volume decreases linearly. With the temperature rising by 10℃, sweep efficiency increases by 8% while displacement volume declines by 0.5 on average.

Keywords

methane displaced by supercritical carbon dioxide, temperature, pressure of CO2, sweep efficiency, dis-placement volume

DOI

10.3969/j.issn.1001-1986.2019.03.014

Reference

[1] 王公达,REN Tingxiang,齐庆新,等.吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报,2016,41(1):49-56. WANG Gongda,REN Tingxiang,QI Qingxin,et al. Mechanism of adsorption-desorption hysteresis and its influence on deep CBM recovery[J]. Journal of China Coal Society,2016,41(1):49-56.

[2] 梁冰,孙可明. 低渗透煤层气开采理论及其应用[M]. 北京:科学出版社,2006.

[3] REUCROFT P J,PATEL H. Gas-induced swelling in coal[J]. Fuel,1986,65(6):816-820.

[4] REUCROFT P J,SETHURAMAN A R. Effect of pressure on carbon dioxide induced coal swelling[J]. Energy & Fuel,1987,1(1):72-75.

[5] 吴世跃,赵文. 含吸附煤层气煤的有效应力分析[J]. 岩石力学与工程学报,2005,24(10):1674-1678. WU Shiyue,ZHAO Wen. Analysis of effective stress in adsorbed methane-coal system[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(10):1674-1678.

[6] 刘世奇,王恬,杜艺,等. 超临界CO2对烟煤和无烟煤化学结构的影响[J]. 煤田地质与勘探,2018,46(5):19-25. LIU Shiqi,WANG Tian,DU Yi,et al. The effects of supercritical CO2 on the chemical structure of bituminous coal and anthracite[J]. Coal Geology & Exploration,2018,46(5):19-25.

[7] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1-9. SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1-9.

[8] SIEMONS N,BUSCH A. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology,2007,69(4):229-242.

[9] HOL S,PEACH C J,SPIERS C J. A new experimental method to determine the CO2 sorption capacity of coal[J]. Energy Procedia,2011,4:3125-3130.

[10] GENSTERBLUM Y,MERKEL A,BUSCH A,et al. High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45-57.

[11] WU D,LIU X,LIANG B,et al. Experiments on displacing methane in coal by injecting supercritical carbon dioxide[J]. Energy & Fuels,2018,32(12):12766-12771.

[12] 刘会虎,吴海燕,徐宏杰,等. 沁水盆地南部深部煤层超临界CO2吸附特征及其控制因素[J]. 煤田地质与勘探,2018,46(5):37-42. LIU Huihu,WU Haiyan,XU Hongjie,et al. Supercritical CO2 adsorption characteristics and their control factors in deep-seated coal seams in southern Qinshui basin[J]. Coal Geology & Exploration,2018,46(5):37-42.

[13] KUTCHKO B G,GOODMAN A L,ROSENBAUM E,et al. Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy[J]. Fuel,2013,107:777-786.

[14] 刘长江,张琨,宋璠. CO2地质埋藏深度对高阶煤孔隙结构的影响[J]. 煤田地质与勘探,2018,46(5):32-36. LIU Changjiang,ZHANG Kun,SONG Fan. Influences of burial depth on pore structure of high-rank coal during the CO2 storage process[J]. Coal Geology & Exploration,2018,46(5):32-36.

[15] ZHANG Y,LEBEDEV M,SARMADIVALEH M,et al. Swelling-induced changes in coal microstructure due to supercritical CO2 injection[J]. Geophysical Research Letters,2016,43(17):9077-9083.

[16] PERERA M S A,RANJITH P G,VIETE D R. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the southern Sydney basin[J]. Applied Energy,2013,110:73-81.

[17] RANATHUNGA A S,PERERA M S A,RANJITH P G,et al. Super-critical CO2 saturation-induced mechanical property alterations in low rank coal:An experimental study[J]. Journal of Supercritical Fluids,2016,109:134-140.

[18] DUTKA B,KUDASIK M,POKRYSZKA Z,et al. Balance of CO2/CH4 exchange sorption in a coal briquette[J]. Fuel Processing Technology,2013,106:95-101.

[19] LEE H H,KIM H J,SHI Y,et al. Competitive adsorption of CO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions[J]. Chemical Engineering Journal,2013,230:93-101.

[20] TOPOLNICKI J,KUDASIK M,DUTKA B. Simplified model of the CO2/CH4 exchange sorption process[J]. Fuel Processing Technology,2013,113:67-74.

[21] 孙可明,吴迪,粟爱国,等. 超临界CO2作用下煤体渗透性与孔隙压力-有效体积应力-温度耦合规律实验研究[J]. 岩石力学与工程学报,2013,32(增刊2):3760-3767. SUN Keming,WU Di,SU Aiguo,et al. Coupling experimental study of coal permeability with pore pressure-effective volume stress-temperature under supercritical carbon dioxide action[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(S2):3760-3767.

[22] RANATHUNGA A S,PERERA M S A,RANJITH P G,et al. A macro-scale experimental study of sub-and super-critical CO2 flow behaviour in Victorian brown coal[J]. Fuel,2015,158:864-873.

[23] RANATHUNGA A S,PERERA M S A,Ranjith P G,et al. Super-critical carbon dioxide flow behaviour in low rank coal:A meso-scale experimental study[J]. Journal of CO2 Utilization,2017,20:1-13.

[24] VISHAL V,SINGH T N. A Laboratory investigation of permeability of coal to supercritical CO2[J]. Geotechnical & Geological Engineering,2015,33(4):1009-1016.

[25] VISHAL V. In-situ disposal of CO2:Liquid and super-critical CO2 permeability in coal at multiple down-hole stress conditions[J]. Journal of CO2 Utilization,2017,17:235-242

[26] YANG T,NIE B,YANG D,et al. Experimental research on displacing coalbed methane with supercritical CO2[J]. Safety Science,2012,50(4):899-902.

[27] 梁卫国,张倍宁,韩俊杰,等. 超临界CO2驱替煤层CH4装置及实验研究[J]. 煤炭学报,2014,39(8):1511-1520. LIANG Weiguo,ZHANG Beining,HAN Junjie,et al. Ex-perimental study on coalbed displacement and recovery by super-critical carbon dioxide injection[J]. Journal of China Coal Society,2014,39(8):1511-1520.

[28] 中国煤炭工业协会. 煤的高压等温吸附实验方法容量法:GB/T 19560-2008[S]. 北京:中国标准出版社,2008.

[29] 李志强,鲜学福,隆晴明. 不同温度应力条件下煤体渗透率实验研究[J]. 中国矿业大学学报,2009,38(4):523-527. LI Zhiqiang,XIAN Xuefu,LONG Qingming. Experiment study of coal permeability under different temperatures and stresses[J]. Journal of China University of Mining and Technology,2009,38(4):523-527.

[30] National Institute of Standards and Technology. NIST chemistry webbook,SRD 69[EB/OL] [2018-07-12]. https://webbook.nist.gov/cgi/fluid.cgi?ID=C124389&Action=Page.

[31] 吴迪,孙可明,肖晓春,等. 块状型煤中甲烷的非等温吸附-解吸实验研究[J]. 中国安全科学学报,2012,22(12):122-126. WU Di,SUN Keming,XIAO Xiaochun,et al. Experimental study on methane nonisothermal adsorption on and desorption from block briquette[J]. China Safety Science Journal,2012,22(12):122-126.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.