Coal Geology & Exploration
Abstract
Due to the complex pore structure and non-single skeleton composition, natural rock samples are more difficult to study than artificial rock samples. The standard rock samples with different mineral content and volume content were artificially synthesized by using brass powder, pyrite sand, graphite powder, epoxy resin, etc. Complex resistivity measurements were taken to the samples by using AutoLab-1000 equipment under different formation pressure conditions. The complex resistivity and the parameters of zero frequency resistivity, polarizability, and time constant of the artificial sandstone standard were derived based on Debye decomposition model. Made a discussion on relationship between parameters of the model, including volume contents of conductive minerals, connectivity, formation pressure and other factors. Formation pressure and mineral composition have been found to have a large effect on polarizability. Research results are of great significance for understanding the electrical characteristics of artificial sandstone samples under high pressure.
Keywords
artificial sandstone, polarizability, complex resistivity, formation pressure, standard-sample
DOI
10.3969/j.issn.1001-1986.2019.02.028
Recommended Citation
TIAN Gang, TANG Xingong, XIANG Kui,
et al.
(2019)
"Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure,"
Coal Geology & Exploration: Vol. 47:
Iss.
2, Article 29.
DOI: 10.3969/j.issn.1001-1986.2019.02.028
Available at:
https://cge.researchcommons.org/journal/vol47/iss2/29
Reference
[1] PELTON W H,WARD S H,HALLOF P G,et al. Mineral discrimination and removal of inductive coupling with multi-frequency IP[J]. Geophysics,1978,43(3):588-609.
[2] DIAS C A. Analytical model for a polarizable medium at radio and lower frequencies[J]. Journal of Geophysical Research,2012,77(26):4945-4956.
[3] DIAS C A. Developments in a model to describe low frequency electrical polarization of rocks[J]. Geophysics,2000,65(2):437-451.
[4] 蒋才洋. 岩(矿)石复电阻率测试与复阻抗模型研究[D]. 抚州:东华理工大学,2014.
[5] NORDSIEK S,WALLER A. A new approach to fitting in-duced-polarization spectra[J]. Geophysics,2008,73(6):235-245.
[6] KAVIAN M,SLOB E C,MULDER W A,et al. A new empirical complex electrical resistivity model[J]. Geophysics,2012,77(3):185-191.
[7] 张赛珍,李英贤,张树椿,等. 我国几个金属矿区岩(矿)石的低频电相位频率特性及其影响因素[J]. 地球物理学报,1984,27(2):176-189. ZHANG Saizhen,LI Yingxian,ZHANG Shuchun,et al. The low frequency electrical phase spectra of mineralized rocks(ores) and some factors which influence them in some sulfide[J]. Chinese Journal of Geophysics,1984,27(2):176-189.
[8] 张赛珍,王式铭. 影响矿化岩石和矿石极化率(η)值的因素及其作用规律[J]. 地质学报,1974,48(1):95-112. ZHANG Saizhen,WANG Shiming. On the factors affecting the polarizability η value of the mineralized rocks and related ores[J]. Acta Geologica Sinica,1974,48(1):95-112.
[9] 范宜仁,刘兵开,赵文杰,等. 岩石激发极化电位的实验研究[J]. 测井技术,1997,21(4):241-246. FAN Yiren,LIU Bingkai,ZHAO Wenjie,et al. A laboratory study on the characteristics of the induced polarization of rock[J]. Well Logging Technology,1997,21(4):241-246.
[10] NORBISRATH J,EBERLI G P,WEGER R J. Complex resistivity spectra for estimating permeability in dolomites from the Mississippian Madison Formation, Wyoming[J]. Marine and Petroleum Geology,2018,89(2):479-487.
[11] WONG J. An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores[J]. Geophysics,1979,44(7):1245-1265.
[12] 黄理善,敬荣中,张胜业,等. 岩矿石模型的复电阻率研究[J]. 地球物理学进展,2014,29(6):2657-2664. HUANG Lishan,JING Rongzhong,ZHANG Shengye,et al. Study of the complex resistivity of rocks and ores model[J]. Progress in Geophysics,2014,29(6):2657-2664.
[13] 肖占山,曾志国,朱世和,等. 基于岩石电性参数频散特性评价润湿性的实验方法研究[J]. 地球物理学报,2009,52(5):1326-1332. XIAO Zhanshan,ZENG Zhiguo,ZHU Shihe,et al. An experimental study of wettability evaluation based on frequency dispersion property of rock electric parameters[J]. Chinese Journal of Geophysics,2009,52(5):1326-1332.
[14] 肖占山,徐世浙,罗延钟,等. 含气泥质砂岩频散特性的实验研究[J]. 天然气工业,2006,26(10):63-65. XIAO Zhanshan,XU Shizhe,LUO Yanzhong,et al. Ex-perimental study on dispersion characteristics of gas bearing shaly sand[J]. Natural Gas Industry,2006,26(10):63-65.
[15] 赵云生,肖占山,田钢,等. 不同物性参数的岩石电性参数频散特性实验[J]. 地球物理学进展,2015,30(1):339-342. ZHAO Yunsheng,XIAO Zhanshan,TIAN Gang,et al. Experimental of rocks electrical parameters dispersion properties with different physical parameters[J]. Progress in Geophysics,2015,30(1):339-342.
[16] 向葵,胡文宝,严良俊,等. 川黔地区页岩复电阻率的频散特性[J]. 石油地球物理勘探,2014,49(5):1013-1019. XIANG Kui,HU Wenbao,YAN Liangjun,et al. Complex resistivity dispersion characteristics of shale samples in Si-chuan and Guizhou area[J]. Oil Geophysical Prospecting,2014,49(5):1013-1019.
[17] 张元中,楚泽涵,李铭,等. 岩石声频散的实验研究及声波速度的外推[J]. 地球物理学报,2001,44(1):103-111. ZHANG Yuanzhong,CHU Zehan,LI Ming,et al. An experimental study on acoustic dispersion of rock and extrapolation of the velocity[J]. Chinese Journal of Geophysics,2001,44(1):103-111.
[18] 石昆法,吴璐苹,李英贤,等. 储层条件下岩石样品电性参数测定及规律[J]. 地球物理学报,1995,38(增刊1):295-302. SHI Kunfa,WU Yiping,LI Yingxian,et al. Determine and regularity of electrical rock electricity parameter[J]. Chinese Journal of Geophysics,1995,38(S1):295-302.
[19] 赵发展,王贇,王界益,等. 准噶尔和塔里木盆地不同岩性岩电参数研究[J]. 地球物理学进展,2006,21(4):1258-1265. ZHAO Fanzhan,WANG Yun,WANG Jieyi,et al. Rock electro parameters variant lithologic characters in Junggar and Tarim basin[J]. Progress in Geophysics,2006,21(4):1258-1265.
[20] 施斌全. 中深层天然气储层岩石物理实验研究[D]. 青岛:中国石油大学(华东),2007.
[21] 韩学辉,杨龙,侯庆宇,等. 一种分散泥质胶结疏松砂岩的人工岩样制作新方法[J]. 地球物理学进展,2013,28(6):2944-2949. HAN Xuehui,YANG Long,HOU Qingyu,et al. A new method for making artificial rock of unconsolidated sandstone cemented by dispersed shale[J]. Progress in Geophysics,2013,28(6):2944-2949.
[22] 刘祝萍,吴小薇,楚泽涵,等. 岩石声学参数的实验测量及研究[J]. 地球物理学报,1994,37(5):659-666. LIU Zhuping,WU Xiaowei,CHU Zehan,et al. Laboratory study of acoustic parameters of rock[J]. Chinese Journal of Geophysics,1994,37(5):659-666.
[23] 丁拼搏,狄帮让,魏建新,等. 不同尺度裂缝对弹性波速度和各向异性影响的实验研究[J]. 地球物理学报,2017,60(4):1538-1546. DING Pingbo,DI Bangrang,WEI Jianxin,et al. Velocity and anisotropy influenced by different scale fractures:Experiments on synthetic rocks with controlled fractures[J]. Chinese Journal of Geophysics,2017,60(4):1538-1546.
[24] 赵阳,周宏伟,钟江城,等. 黏土配比对人工砂岩渗透率影响规律的实验研究[J]. 岩石力学与工程学报,2018,37(增刊1):3253-3262. ZHAO Yang,ZHOU Hongwei,ZHONG Jiangcheng,et al. An experimental study on artificial sandstone-clay proportioning on permeation behavior[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S1):3253-3262.
[25] VINEGARH J,WAXMANM H. Induced polarization of shaly sands[J]. Geophysics,1984,49(8):1267-1287.
[26] REVIL A. Spectral induced polarization of shaly sands:Influence of the electrical double layer[J]. Water Resources Research,2012,48,W02517.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons