Coal Geology & Exploration
Abstract
In order to discuss pore structure and pressure-sensitive effect of tectonic coal, coal samples of Huaibei Xutuan mine were measured by optical microscope, scanning electron microscope, mercury injection, and triaxial servo-controlled seepage equipment for thermo-fluid-solid coupling to reveal the pore structure and the influence of effective stress on permeability or permeability coefficient of structural coal. The results show that cataclastic structure of tectonic coal is regular, flat and has good connectivity; the pores of primary coal are mainly composed of micropores, micropores and transitional pores are dominant in tectonic coal has. The effective stress of ductile deformed coal has a parabolic relationship with permeability, when the effective stress is lower than 4 MPa, the coal shows obvious permeability sensitivity; when the effective stress is larger than 4 MPa, the coal shows weak permeability sensitivity. This trend is the result of the effective stress and desorption effect. The minimum permeability is caused by adsorption/desorption and effective confining pressure. Compared with the coal in Qinshui basin, coal samples of Xutuan mine have higher permeability damage coefficient.
Keywords
Xutuan coal mine, tectonic coal, pore and fracture characteristics, seepage, stress-sensitivity
DOI
10.3969/j.issn.1001-1986.2019.02.010
Recommended Citation
DONG Kui, JIA Jiancheng, GONG Zewen,
et al.
(2019)
"Study on pore structure and pressure-sensitive effect of tectonic coal in Huaibei Xutuan mine,"
Coal Geology & Exploration: Vol. 47:
Iss.
2, Article 11.
DOI: 10.3969/j.issn.1001-1986.2019.02.010
Available at:
https://cge.researchcommons.org/journal/vol47/iss2/11
Reference
[1] 侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学,2012,42(10):1487-1495. HOU Quanlin,LI Huijun,FAN Junjia,et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China:Earth Sciences,2012,42(10):1487-1495.
[2] 琚宜文,姜波,侯泉林,等. 构造煤13C-NMR谱及其结构成分的应力效应[J]. 中国科学(D辑:地球科学),2006,35(9):847-861. JU Yiwen,JIANG Bo,HOU Quanlin,et al. The stress effect of coal 13C-NMR spectrum and its structural components[J]. Science in China Series D:Earth Sciences,2006,35(9):847-861.
[3] 姜波,秦勇,琚宜文,等. 构造煤化学结构演化与瓦斯特性耦合机理[J]. 地学前缘,2009,16(2):262-271. JIANG Bo,QIN Yong,JU Yiwen,et al. The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J]. Earth Science Frontiers,2009,16(2):262-271.
[4] 宋昱,姜波,李凤丽,等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学,2018,43(5):1611-1622. SONG Yu,JIANG Bo,LI Fengli,et al. Applicability of fractal model and nanopores' fractal characteristics for low-middle rank tectonic deformed coals[J]. Earth Science,2018,43(5):1611-1622.
[5] 李明. 构造煤结构演化及成因机制[D]. 徐州:中国矿业大学,2013.
[6] 屈争辉. 构造煤结构及其对瓦斯特性的控制机理研究[D]. 徐州:中国矿业大学,2010.
[7] 彭涛,吴基文. 许疃煤矿地质构造特征及其形成机理分析[J]. 科学技术与工程,2013,13(27):8106-8110. PENG Tao,WU Jiwen. Analysis of geological structure features and formation mechanism in Xutuan coal mine[J]. Science Technology and Engineering,2013,13(27):8106-8110.
[8] 王林杰,常溪溪,亓宁,等. 淮北矿区许疃矿构造煤类型及其孔隙特征研究[J]. 煤矿安全,2017,48(4):1-4. WANG Linjie,CHANG Xixi,QI Ning,et al. Study on types of tectonic coal from Xutuan coal mine in Huaibei coalfield and its pore characteristics[J]. Safety in Coal Mines,2017,48(4):1-4.
[9] 安徽省煤田地质局第三勘探队. 安徽省蒙城县许疃煤矿煤炭资源储量核实报告[R]. 淮北:淮北矿业股份有限公司,2017.
[10] 琚宜文,姜波,侯泉林,等. 构造煤结构-成因新分类及其地质意义[J]. 煤炭学报,2004,29(5):513-517. JU Yiwen,JIANG Bo,HOU Quanlin,et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society,2004,29(5):513-517.
[11] 王恩营,刘明举,魏建平. 构造煤成因-结构-构造分类新方案[J]. 煤炭学报,2009,34(5):656-660. WANG Enying,LIU Mingju,WEI Jianping. New genet-ic-texture-structure classification system of tectonic coal[J]. Journal of China Coal Society,2009,34(5):656-660.
[12] 陈尚斌,夏筱红,秦勇,等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报,2013,38(5):760-765. CHEN Shangbin,XIA Xiaohong,QIN Yong,et al. Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan basin[J]. Journal of China Coal Society,2013,38(5):760-765.
[13] 霍多特B B. 煤与瓦斯突出[M]. 宋世钊,王佑安,译. 北京:中国工业出版社,1966.
[14] 孟召平,侯泉林. 煤储层应力敏感性及影响因素的试验分析[J]. 煤炭学报,2012,37(3):430-437. MENG Zhaoping,HOU Quanlin. Experimental research on stress sensitivity of coal reservoir and its influencing factors[J]. Journal of China Coal Society,2012,37(3):430-437.
[15] 祝捷,王宏伟,姜耀东,等. 有效围压对煤体渗透性演化的影响研究[J]. 煤炭工程,2015,47(5):87-90. ZHU Jie,WANG Hongwei,JIANG Yaodong,et al. Influence study of effective confining pressure on evolution of coal permeability[J]. Coal Engineering,2015,47(5):87-90.
[16] 冯子军,万志军,赵阳升,等. 高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究[J]. 岩石力学与工程学报,2010,29(4):689-696. FENG Zijun,WAN Zhijun,ZHAO Yangsheng,et al. Ex-perimental study of permeability of anthracite and gas coal masses under high temperature and triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(4):689-696.
[17] 王登科,魏建平,尹光志. 复杂应力路径下含瓦斯煤渗透性变化规律研究[J]. 岩石力学与工程学报,2012,31(2):303-310. WANG Dengke,WEI Jianping,YIN Guangzhi. Investigation on change rule of permeability of coal containing gas under complex stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):303-310.
[18] 孟召平,田永东,李国富. 沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J]. 自然科学进展,2009,19(10):1142-1148. MENG Zhaoping,TIAN Yongdong,LI Guofu. The relationship of in-situ stress and permeability and its control mechanism in the southern Qinshui basin[J]. Progress in Natural Science,2009,19(10):1142-1148.
[19] 杨延辉,陈彦君,郭希波,等. 沁水盆地南部高煤阶煤岩渗透率压敏效应分析[J]. 煤炭科学技术,2015,43(12):152-156. YANG Yanhui,CHEN Yanjun,GUO Xibo,et al.Analysis on effect of stress sensitivity on permeability of high-rank coal in southern Qinshui basin[J]. Coal Science and Technology,2015,43(12):152-156.
[20] 孙立东,赵永军. 沁水盆地煤储层渗透性影响因素研究[J]. 煤炭科学技术,2006,34(10):74-78. SUN Lidong,ZHAO Yongjun. Research on permeability influence factors of coal deposit layer in Qinshui basin[J]. Coal Science and Technology,2006,34(10):74-78.
[21] 陈世达,汤达祯,高丽军,等. 有效应力对高煤级煤储层渗透率的控制作用[J]. 煤田地质与勘探,2017,45(4):76-80. CHEN Shida,TANG Dazhen,GAO Lijun. Control of effective stress on permeability in high-rank coal reservoirs[J]. Coal Geology & Exploration,2017,45(4):76-80.
[22] YAN Zhiming,WANG Kai,ZANG Jie,et al. Anisotropic coal permeability and its stress sensitivity[J]. International Journal of Mining Science and Technology,2018,1-5.
[23] ZHAI Jianting,WANG Jilin,LU Guanwen,et al. Per-meability characteristics of remolded tectonically deformed coal and its influence factors[J]. Journal of Natural Gas Science and Engineering,2018:S1875510018300933.
[24] 田永东,武杰. 沁水盆地南部高煤阶煤储层敏感性[J]. 煤炭学报,2014,39(9):1835-1839. TIAN Yongdong,WU Jie. Sensitivity of high-rank coal-bed methane reservoir in the southern Qinshui basin[J]. Journal of China Coal Society,2014,39(9):1835-1839.
[25] 韦立栋. 沁水盆地里必区块煤样的应力敏感性分析[C]//北京力学会第二十二届学术年会会议论文集. 北京:2016.
[26] 刘会虎,桑树勋,冯清凌,等. 沁水盆地南部煤层气井排采储层应力敏感研究[J]. 煤炭学报,2014,39(9):1873-1878. LIU Huihu,SANG Shuxun,FENG Qingling,et al. Study on stress sensitivity of coal reservoir during drainage of coalbed methane well in southern Qinshui basin[J]. Journal of China Coal Society,2014,39(9):1873-1878.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons