Coal Geology & Exploration
Abstract
In order to avoid the threat of water penetration from the goaf of overlying seam No.6 during mining seam No.10 in Shengli coal mine of Linfen, Shanxi, plate-shells theory and fracture mechanics theory were used to establish the mechanics model of the development height of water-conducting fissure zone and the rupture depth of the floor. The water conducting fissure zone developmental height in districts I-VI of coal seam 10 is 46.77 m, 48.86 m, 56.05 m, 56.14 m, 56.33 m and 55.20 m, and the rupture zone depth of the floor in districts I-IV areas of coal seam 6 is 1.57 m, 1.14 m, 1.85 m and 1.26 m. By structuring criteria for water accumulation risk classification of overlying goaf and to determine the risk of accumulated water in the goaf of coal seam 6 during the mining process of coal seam10, the determination result shows that the water accumulation risk in districts I-IV areas of coal seam 6 is of the type of water inrush for seam 10, and would threaten the mining of coal seam10. The influence of the unminable area of seam 6 on the districts V-VI of seam 10 is of permeability of primary rock, and wouldn't threaten the coal extraction in the districts V-VI of coal seam 10.
Keywords
goaf water, plate-shell theory, fracture mechanics theory, water-flowing fractured zone, fractured zone
DOI
10.3969/j.issn.1001-1986.2019.01.021
Recommended Citation
TI Zhengyi, ZHANG Feng, QIN Hongyan,
et al.
(2019)
"Risk judgment technology of water accumulation in overlying goaf based on plate shell and fracture mechanics theory,"
Coal Geology & Exploration: Vol. 47:
Iss.
1, Article 22.
DOI: 10.3969/j.issn.1001-1986.2019.01.021
Available at:
https://cge.researchcommons.org/journal/vol47/iss1/22
Reference
[1] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):529-534. QIAN Minggao. On sustainable coal mining in China[J]. Journal of China Coal Society,2010,35(4):529-534.
[2] 李永明. 水体下急倾斜煤层充填开采覆岩稳定性及合理防水煤柱研究[D]. 徐州:中国矿业大学,2012.
[3] 李涛. 陕北煤炭大规模开采含隔水层结构变异及水资源动态研究[D]. 徐州:中国矿业大学,2012.
[4] 符辉. 矿井突水及避灾仿真算法的研究与实现[D]. 北京:中国矿业大学(北京),2013.
[5] 乔伟,李文平,李小琴. 采场顶板离层水"静水压涌突水"机理及防治[J]. 采矿与安全工程学报,2011,28(1):96-104. QIAO Wei,LI Wenping,LI Xiaoqin. Mechanism of "hydrostatic water-inrush" and countermeasures for water inrush in roof bed separation of a mining face[J]. Journal of Mining and Safety Engineering,2011,28(1):96-104.
[6] 施龙青,辛恒奇,翟培合,等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报,2012,41(1):37-41. SHI Longqing,XIN Hengqi,ZHAI Peihe,et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining and Technology,2012,41(1):37-41.
[7] 陈荣华,白海波,冯梅梅. 综放面覆岩导水裂隙带高度的确定[J]. 采矿与安全工程学报,2006,23(2):220-223. CHEN Ronghua,BAI Haibo,FENG Meimei. Determination of the height of water flowing fractured zone in overburden strata above fully mechanized top coal caving face[J]. Journal of Mining & Safety Engineering,2006,23(2):220-223.
[8] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
[9] 王晓振. 松散承压含水层下采煤压架突水灾害发生条件及防治研究[D]. 徐州:中国矿业大学,2012.
[10] 桂和荣,周庆富,廖多荪,等. 综放开采最大导水裂隙带高度的应力法预测[J]. 煤炭学报,1997,22(4):375-379. GUI Herong,ZHOU Qingfu,LIAO Duosun,et al. Prediction of maximum height of the fractured zone by stressing method for sub-levels caving mining[J]. Journal of China Coal Society, 1997,22(4):375-379.
[11] 李剑. 含水层下矸石充填采煤覆岩导水裂隙演化机理及控制研究[D]. 徐州:中国矿业大学,2013.
[12] 冯梅梅,茅献彪,白海波. 带压开采煤层底板阻隔水性能的力学分析及应用[M]. 徐州:中国矿业大学出版社,2013.
[13] 张好,姚多喜,鲁海峰,等. 主成分分析与Bayes判别法在突水水源判别中的应用[J]. 煤田地质与勘探,2017, 45(5):87-93. ZHANG Hao,YAO Duoxi,LU Haifeng,et al. Application of principal component analysis and Bayes discrimination approach in water source identification[J]. Coal Geology & Exploration, 2017,45(5):87-93.
[14] 孙福勋,魏久传,万云鹏,等. 基于Fisher判别分析和质心距评价法的矿井水源判别[J]. 煤田地质与勘探,2017,45(1):80-84. SUN Fuxun,WEI Jiuchuan,WAN Yunpeng,et al. Recognition method of mine water source based on Fisher's discriminant analysis and centroid distance evaluation[J]. Coal Geology & Exploration,2017,45(1):80-84.
[15] 牟林. 水质动态曲线预测在突水水源判别中的应用[J]. 煤田地质与勘探,2016,44(3):70-74. MOU Lin. Application of dynamic curve prediction method in discriminating water-bursting source[J]. Coal Geology & Exploration,2016,44(3):70-74.
[16] 于雯琪,钱家忠,马雷,等. 基于GIS和AHP的谢桥煤矿13-1煤顶板突水危险性评价[J]. 煤田地质与勘探,2016,44(1):69-73. YU Wenqi,QIAN Jiazhong,MA Lei,et al. The water inrush risk assessment of roof of seam 13-1 in Xieqiao mine based on GIS and AHP[J]. Coal Geology & Exploration,2016, 44(1):69-73.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons