Coal Geology & Exploration
Abstract
Objective Deep coalbed methane (CBM; burial depths: > 1500 m) in China holds considerable resource potential. As a strategic clean energy, deep CBM is exhibiting increasingly high value of exploitation and utilization. This is of great practical significance for China’s energy structure transformation and the achievement of peak carbon dioxide emissions and carbon neutrality in the country. In recent years, breakthroughs have been made in deep CBM exploration in basins such as Ordos, Sichuan, and Junggar, with a single-well daily gas production exceeding 100 000 m3, marking the initial achievement of large-scale deep CBM exploitation. However, the existing standard system, primarily designed for shallow CBM resources (burial depths: < 1 000 m), is difficult to adapt to the complex, unique geological conditions of deep CBM such as high temperature, high pressure, high stress, strong heterogeneity, and high free gas content. This leads to insufficient technical adaptability and pronounced risks of safety and environmental protection in the exploration and exploitation of deep CBM. Methods Through a systematic analysis of differences in geological and engineering characteristics between shallow and deep CBM, this study proposed a standard system framework following three dimensions (i.e., geological complexity, technical adaptability, and industrial and ecological collaboration) and four principles (scientific, systematic, practical, and dynamic natures). Furthermore, this study determined the staged objectives for the standard system construction. Specifically, the short-term objective is to establish a geological and engineering integrated standard framework by focusing on the improvement in exploration accuracy and the optimization of exploitation processes, aiming to drive technological innovations and industrial transformation and upgrading. The medium-term objective is to establish a technical standard cluster covering the entire industry chain while promoting the whole life cycle risk management, with the purpose of achieving efficient resource utilization and maximizing investment returns. The long-term objective is to participate in the formulation of international standards and intensify international technological exchanges and cooperation, thereby enhancing the international competitiveness of China’s deep CBM industry. Results and Conclusions The results of this study indicate that the standard system for the deep CBM industry should incorporate six major fields: the basic and general aspect, geological exploration, seismic surveys and logging, exploitation assessment, engineering construction, and safety and environmental protection. It is recommended to highlight the construction of core technical standards of reservoir assessment, sweet spot assessment, and fracturing stimulation following a standard development strategy of inheritance-based improvement combined with revolutionary innovations. It is suggested that a standardized working framework should be established more quickly via strategic pathways including the construction of a standard system framework, the formulation and revision of key standards, the combination of technological innovations and standardization, international cooperation and exchanges, and political support and guarantee. The purpose is to provide a guarantee in terms of systems and technical support for the high-quality development of the deep CBM industry.
Keywords
deep coalbed methane(CBM), exploration and exploitation, standard system, implementation strategy
DOI
10.12363/issn.1001-1986.25.02.0083
Recommended Citation
CHEN Xinjun, LIU Zengqin, SHEN Baojian,
et al.
(2025)
"Reflections and implementation strategies for constructing a standard system for deep coalbed methane exploration and exploitation,"
Coal Geology & Exploration: Vol. 53:
Iss.
4, Article 7.
DOI: 10.12363/issn.1001-1986.25.02.0083
Available at:
https://cge.researchcommons.org/journal/vol53/iss4/7
Reference
[1] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
[2] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.
QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
[3] 秦勇. 中国煤层气产业化面临的形势与挑战(Ⅲ):走向与前瞻性探索[J]. 天然气工业,2006,26(3):1−5.
QIN Yong. Situation and challenges for coal–bed methane industrialization in China (Ⅲ):Trend and pioneer research[J]. Natural Gas Industry,2006,26(3):1−5.
[4] 张宇,赵培荣,刘士林,等. 中国石化“十四五”主要勘探进展与发展战略[J]. 中国石油勘探,2024,29(1):14−31.
ZHANG Yu,ZHAO Peirong,LIU Shilin,et al. Main exploration progress and development strategy of Sinopec during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):14−31.
[5] 吴裕根,门相勇,娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13.
WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13.
[6] 郭旭升,赵培荣,申宝剑,等. 中国深层煤层气地质特征与勘探实践[J]. 石油与天然气地质,2024,45(6):1511−1523.
GUO Xusheng,ZHAO Peirong,SHEN Baojian,et al. Geological features and exploration practices of deep coalbed methane in China[J]. Oil & Gas Geology,2024,45(6):1511−1523.
[7] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.
SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.
[8] 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质,2024,45(6):1555−1566.
LI Yahui. Exploration practices of and recent production breakthroughs in deep middle–rank coalbed methane in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2024,45(6):1555−1566.
[9] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.
XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
[10] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
[11] 毛新军,李艳平,梁则亮,等. 准噶尔盆地侏罗系煤岩气成藏条件及勘探潜力[J]. 中国石油勘探,2024,29(4):31−43.
MAO Xinjun,LI Yanping,LIANG Zeliang,et al. Hydrocarbon accumulation conditions and exploration potential of the Jurassic coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2024,29(4):31−43.
[12] 郭旭升,周德华,赵培荣,等. 鄂尔多斯盆地石炭系–二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013−1023.
GUO Xusheng,ZHOU Dehua,ZHAO Peirong,et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous–Permian coal measure strata,Ordos Basin[J]. Oil & Gas Geology,2022,43(5):1013−1023.
[13] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.
ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.
[14] 邵龙义,徐小涛,王帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19−38.
SHAO Longyi,XU Xiaotao,WANG Shuai,et al. Research progress of Palaeogeography and Palaeoenvironmental evolution of coal–bearing series in China[J]. Journal of Palaeogeography(Chinese Edition),2021,23(1):19−38.
[15] 陈贞龙,王烽,陈刚,等. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术,2018,46(6):80−84.
CHEN Zhenlong,WANG Feng,CHEN Gang,et al. Study on enrichment law and development features of deep coalbed methane in south Yanchuan Field[J]. Coal Science and Technology,2018,46(6):80−84.
[16] 明盈,孙豪飞,汤达祯,等. 四川盆地上二叠统龙潭组深–超深部煤层气资源开发潜力[J]. 煤田地质与勘探,2024,52(2):102−112.
MING Ying,SUN Haofei,TANG Dazhen,et al. Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation,Sichuan Basin[J]. Coal Geology & Exploration,2024,52(2):102−112.
[17] 郭旭升,胡宗全,李双建,等. 深层–超深层天然气勘探研究进展与展望[J]. 石油科学通报,2023,8(4):461−474.
GUO Xusheng,HU Zongquan,LI Shuangjian,et al. Progress and prospect of natural gas exploration and research in deep and ultra–deep strata[J]. Petroleum Science Bulletin,2023,8(4):461−474.
[18] 何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285.
HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285.
[19] 刘建忠,朱光辉,刘彦成,等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴–神府区块为例[J]. 石油学报,2023,44(11):1827−1839.
LIU Jianzhong,ZHU Guanghui,LIU Yancheng,et al. Breakthrough,future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing–Shenfu Block[J]. Acta Petrolei Sinica,2023,44(11):1827−1839.
[20] 熊先钺,闫霞,徐凤银,等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2023,44(11):1812−1826.
XIONG Xianyue,YAN Xia,XU Fengyin,et al. Analysis of multi–factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1812−1826.
[21] 郭晶,张聪,乔茂坡,等. 沁南高煤阶煤层气勘探开发标准体系现状及方向[J]. 中国煤层气,2023,20(6):38−42.
GUO Jing,ZHANG Cong,QIAO Maopo,et al. Practice of standard transformation of high rank coalbed methane exploration and development results in the south of Qinshui Basin[J]. China Coalbed Methane,2023,20(6):38−42.
[22] 李国欣,张水昌,何海清,等. 煤岩气:概念、内涵与分类标准[J]. 石油勘探与开发,2024,51(4):783−795.
LI Guoxin,ZHANG Shuichang,HE Haiqing,et al. Coal–rock gas:Concept,connotation and classification criteria[J]. Petroleum Exploration and Development,2024,51(4):783−795.
[23] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
[24] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81.
[25] MILICI R C,HATCH J R,PAWLEWICZ M J. Coalbed methane resources of the Appalachian Basin,Eastern USA[J]. International Journal of Coal Geology,2010,82(3/4):160−174.
[26] SALMACHI A,RAJABI M,WAINMAN C,et al. History,geology,in situ stress pattern,gas content and permeability of coal seam gas basins in Australia:A review[J]. Energies,2021,14(9):2651.
[27] 孙斌,杨敏芳,杨青,等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报,2017,42(增刊1):195−202.
SUN Bin,YANG Minfang,YANG Qing,et al. Analysis on occurrence state of deep coalbed methane in Junggar Basin[J]. Journal of China Coal Society,2017,42(Sup.1):195−202.
[28] 桑树勋,韩思杰,周效志,等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发,2023,13(4):403−415.
SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development,2023,13(4):403−415.
[29] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30.
LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30.
[30] 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67.
LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning–Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67.
[31] 陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京:中国矿业大学(北京),2019.
TAO Chuanqi. Deep coalbed methane accumulation and reservoiring in Linxing area,eastern Ordos Basin,China[D]. Beijing:China University of Mining & Technology(Beijing),2019.
[32] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.
YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir–controlling mechanism and production–controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
[33] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
[34] 邓泽,王红岩,姜振学,等. 深部煤储层孔裂隙结构对煤层气赋存的影响:以鄂尔多斯盆地东缘大宁–吉县区块为例[J]. 煤炭科学技术,2024,52(8):106−123.
DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane:A case study of Daning–Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123.
[35] 许浩,汤达祯,陶树,等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探,2024,52(2):33−39.
XU Hao,TANG Dazhen,TAO Shu,et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration,2024,52(2):33−39.
[36] 郭广山,徐凤银,刘丽芳,等. 鄂尔多斯盆地府谷地区深部煤层气富集成藏规律及有利区评价[J]. 煤田地质与勘探,2024,52(2):81−91.
GUO Guangshan,XU Fengyin,LIU Lifang,et al. Enrichment and accumulation patterns and favorable area evaluation of deep coalbed methane in the Fugu area,Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):81−91.
[37] 邹才能,翟光明,张光亚,等. 全球常规–非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13−25.
ZOU Caineng,ZHAI Guangming,ZHANG Guangya,et al. Formation,distribution,potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development,2015,42(1):13−25.
[38] 秦勇,申建,沈玉林,等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报,2019,40(10):1147−1157.
QIN Yong,SHEN Jian,SHEN Yulin,et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica,2019,40(10):1147−1157.
[39] SHARMA R,SINGH S,ANAND S,et al. A review of coal bed methane production techniques and prospects in India[J]. Materials Today:Proceedings,2024,99:177−184.
[40] LANGENBERG C W,BEATON A,BERHANE H. Regional evaluation of the coalbed–methane potential of the foothills/mountains of Alberta,Canada[J]. International Journal of Coal Geology,2006,65(1/2):114−128.
[41] CAMAC B A,BENSON J,CHAN V,et al. Cooper Basin deep coal–the new unconventional paradigm:Deepest producing coals in Australia[J]. ASEG Extended Abstracts,2018,2018(1):1−7.
[42] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报,2001,26(1):40−44.
ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society,2001,26(1):40−44.
[43] HU Biao,CHENG Yuanping,PAN Zhejun. Classification methods of pore structures in coal:A review and new insight[J]. Gas Science and Engineering,2023,110:204876.
[44] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.
[45] 赵喆,徐旺林,赵振宇,等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234−247.
ZHAO Zhe,XU Wanglin,ZHAO Zhenyu,et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):234−247.
[46] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.
NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.
[47] 王成旺,甄怀宾,陈高杰,等. 大宁–吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质,2022,34(2):1−5.
WANG Chengwang,ZHEN Huaibin,CHEN Gaojie,et al. Assessment of coal No. 8 reservoir features and fracturability in Daning–Jixian Block deep part[J]. Coal Geology of China,2022,34(2):1−5.
[48] 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气,2021,33(4):120−128.
SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas,2021,33(4):120−128.
[49] 邱峰,刘晋华,蔡益栋,等. 基于测井的煤层力学特性评价及煤层气开发有利区预测:以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探,2023,51(4):46−56.
QIU Feng,LIU Jinhua,CAI Yidong,et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging:A case study of No. 3 coal bed in Zhengzhuang Block,southern Qinshui Basin[J]. Coal Geology & Exploration,2023,51(4):46−56.
[50] 钱玉萍. 煤层可压性评价方法研究及应用[J]. 海洋石油,2022,42(1):55−58.
QIAN Yuping. Study and application of evaluation methods for the fracability in coal reservoirs[J]. Offshore Oil,2022,42(1):55−58.
[51] 郭大立,张书玲,王璇,等. 基于动态权函数的煤层可压性综合评价[J]. 西南石油大学学报(自然科学版),2022,44(2):97−104.
GUO Dali,ZHANG Shuling,WANG Xuan,et al. Comprehensive evaluation of coalbed fracability based on dynamic weight function[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2022,44(2):97−104.
[52] LI Song,QIN Yong,TANG Dazhen,et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology,2023,279:104369.
[53] 杨永杰,宋扬,陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报,2006,31(2):150−153.
YANG Yongjie,SONG Yang,CHEN Shaojie. Test study of coal’s strength and deformation characteristics under triaxial compression[J]. Journal of China Coal Society,2006,31(2):150−153.
[54] 高向东,王延斌,倪小明,等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报,2020,45(增刊2):912−921.
GAO Xiangdong,WANG Yanbin,NI Xiaoming,et al. Mechanical properties of deep coal and rock in Linxing area and its influences on fracturing of deep coal reservoir[J]. Journal of China Coal Society,2020,45(Sup.2):912−921.
[55] 郝宪杰,刘继山,魏英楠,等. 2000m超深煤系储层力学及声发射特征的围压效应[J]. 中南大学学报(自然科学版),2021,52(8):2611−2621.
HAO Xianjie,LIU Jishan,WEI Yingnan,et al. Effects of confining pressure on mechanical responses and acoustic characteristics of coal gas seams deeper than 2000m[J]. Journal of Central South University(Science and Technology),2021,52(8):2611−2621.
[56] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780.
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780.
[57] 李贵红,赵佩佩,吴信波. 煤层气地质工程一体化平台的建设构想[J]. 煤田地质与勘探,2022,50(9):130−136.
LI Guihong,ZHAO Peipei,WU Xinbo. Construction concept of integrated geological engineering platform for coalbed methane[J]. Coal Geology & Exploration,2022,50(9):130−136.
[58] 侯雨庭,许朝阳,刘双全,等. 鄂尔多斯盆地深层煤岩气水平井钻井液技术进展及展望[J]. 钻采工艺,2024,47(6):110−116.
HOU Yuting,XU Zhaoyang,LIU Shuangquan,et al. Development and prospect of drilling fluid technology for deep coal gas horizontal wells in Ordos Basin[J]. Drilling & Production Technology,2024,47(6):110−116.
[59] 冯义,任凯,刘俊田,等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺,2024,47(3):33−41.
FENG Yi,REN Kai,LIU Juntian,et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling & Production Technology,2024,47(3):33−41.
[60] 杨帆,李斌,王昆剑,等. 深部煤层气水平井大规模极限体积压裂技术:以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发,2024,51(2):389−398.
YANG Fan,LI Bin,WANG Kunjian,et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):389−398.
[61] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544.
XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Ordos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.
[62] 李勇,陈涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术,2024,52(2):171−182.
LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182.
[63] 韩文龙,李勇,王力,等. 柿庄北煤层气区块煤层压裂裂缝扩展规律及影响因素[J]. 煤炭科学技术,2024,52(增刊1):127−136.
HAN Wenlong,LI Yong,WANG Li,et al. Fracturing fracture propagation law of coal seam and its influencing factors in the Shizhuang North Block[J]. Coal Science and Technology,2024,52(Sup.1):127−136.
[64] 罗伟疆,宁崇如,黄凯. 煤层气压裂液研究现状及其展望[J]. 中国煤层气,2023,20(3):30−35.
LUO Weijiang,NING Chongru,HUANG Kai. Current situation and prospect of research on coalbed methane fracturing fluid[J]. China Coalbed Methane,2023,20(3):30−35.
[65] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探,2020,44(5):985−990.
HE Jishan. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration,2020,44(5):985−990.
[66] 胡志方,罗卫锋,王胜建,等. 广域电磁法在安页2井压裂监测应用探索[J]. 物探与化探,2023,47(3):718−725.
HU Zhifang,LUO Weifeng,WANG Shengjian,et al. Application of wide field electromagnetic method in the fracturing monitoring of well Anye–2[J]. Geophysical and Geochemical Exploration,2023,47(3):718−725.
[67] 姚红生,肖翠,陈贞龙,等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发,2022,12(4):545−555.
YAO Hongsheng,XIAO Cui,CHEN Zhenlong,et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):545−555.
[68] 石军太,吴嘉仪,房烨欣,等. 考虑煤粉堵塞影响的煤储层渗透率模型及其应用[J]. 天然气工业,2020,40(6):78−89.
SHI Juntai,WU Jiayi,FANG Yexin,et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry,2020,40(6):78−89.
[69] 李勇,韩文龙,王延斌,等. 基于煤层气高效开发的煤粉凝聚–沉降机制研究进展[J]. 煤田地质与勘探,2021,49(2):1−12.
LI Yong,HAN Wenlong,WANG Yanbin,et al. Progress of coal fines agglomeration and settlement mechanism based on high efficiency coalbed methane drainage[J]. Coal Geology & Exploration,2021,49(2):1−12.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons