Coal Geology & Exploration
Abstract
Objective This study aims to meet the needs of mine rescue in cave-in accidents occurring in narrow underground spaces and to address the contradiction between equipment miniaturization and the drilling of large-diameter rescue boreholes under complex collapse conditions. Based on the goal of constructing a 60-m-long rescue passageway, this study developed a dual-power, composite drilling process based on multi-stage casing drilling technology for large-diameter horizontal rescue boreholes under complex collapse conditions. Furthermore, this study investigated the critical drilling parameters, aiming to provide a basis for the function development and parameter formulation of rescue equipment. Methods This study designed supporting three-stage large-diameter casings and large-diameter spiral drill rods, followed by a mechanical analysis of large-diameter casings in the composite casing drilling process. Accordingly, this study established a model for the movement and mechanical analysis of drilling tools. Using this mode, this study analyzed the variation patterns of the axial frictional resistance and frictional moment of the large-diameter first-, second-, and third-stage casings under varying rotational speeds and rates of penetration (ROPs). Results and Conclusions The results indicate that for large-diameter composite casing drilling, the ROP and rotational speed of casings were identified as the major factors influencing their axial frictional resistance and moment of frictional fraction. The variation patterns of the frictional resistance of casings in the composite casing drilling process indicate that, under rotational speeds ranging from 0 r/min to 2 r/min, a slight increase in the rotational speed led to a significant decrease in the axial friction resistance. In contrast, under rotational speeds ranging from 0 r/min to 1.5 r/min, a slight increase in the rotational speed induced a rapid increase in the moment of rotational friction. An analysis based on the law of casings’ frictional resistance that critical parameters of the large-diameter casing drilling technology should be: propulsive force ≥ 2000 kN, rated torque ≥ 5000 kN·m, and the maximum rotational speed of casings ≥ 1 r/min under the maximum torque in the drilling process. These parameters allow for effective resistance reduction in the process of casing rotation. The results of this study serve as a significant reference for drilling rig development and drilling parameter formulation for underground mine rescue.
Keywords
mine rescue, large diameter drilling, casing drilling, composite drilling, frictional resistance, technical parameter
DOI
10.12363/issn.1001-1986.24.11.0693
Recommended Citation
XU Chao, YAO Ningping, JIANG Lei,
et al.
(2025)
"Critical technical parameters of large-diameter multi-stage casing drilling for mine rescue,"
Coal Geology & Exploration: Vol. 53:
Iss.
4, Article 21.
DOI: 10.12363/issn.1001-1986.24.11.0693
Available at:
https://cge.researchcommons.org/journal/vol53/iss4/21
Reference
[1] 田四明,赵勇,石少帅,等. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治,2019,1(2):24−48.
TIAN Siming,ZHAO Yong,SHI Shaoshuai,et al. The status,problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering,2019,1(2):24−48.
[2] 陈洁金,周峰,阳军生,等. 山岭隧道塌方风险模糊层次分析[J]. 岩土力学,2009,30(8):2365−2370.
CHEN Jiejin,ZHOU Feng,YANG Junsheng,et al. Fuzzy analytic hierarchy process for risk evaluation of collapse during construction of mountain tunnel[J]. Rock and Soil Mechanics,2009,30(8):2365−2370.
[3] 解学才,宫伟东,林辰,等. 我国煤矿应急救援现状分析研究[J]. 煤矿安全,2017,48(11):229−232.
XIE Xuecai,GONG Weidong,LIN Chen,et al. Analysis study on present situation of emergency rescue in China’s coal mines[J]. Safety in Coal Mines,2017,48(11):229−232.
[4] 李运强. 美国矿山应急救援体系特点及启示[J]. 中国安全生产科学技术,2013,9(8):183−187.
LI Yunqiang. Characteristics and enlightenment of U. S. mine emergency rescue system[J]. Journal of Safety Science and Technology,2013,9(8):183−187.
[5] 梅国栋,刘璐,文虎. 关于我国矿山应急救援体系的探讨[J]. 矿业安全与环保,2006,33(2):79–81
[6] 田宏亮,邹祖杰,郝世俊,等. 矿山灾害生命保障救援通道快速安全构建关键技术与装备[J]. 煤田地质与勘探,2022,50(11):1−13.
TIAN Hongliang,ZOU Zujie,HAO Shijun,et al. Key technologies and equipment of quickly and safely building life support and rescue channel in mine disaster[J]. Coal Geology & Exploration,2022,50(11):1−13.
[7] 王雷,朱玉芹,张维娜,等. 煤矿大直径救援钻孔顶管钻进装备关键技术研究[J]. 煤田地质与勘探,2022,50(11):58−66.
WANG Lei,ZHU Yuqin,ZHANG Weina,et al. Research on key technology of pipe jacking drilling equipment for large–diameter rescue borehole of coal mine[J]. Coal Geology & Exploration,2022,50(11):58−66.
[8] 祁海莹,唐述明. 国内外矿山救援装备现状及发展趋势探讨[J]. 矿业安全与环保,2011,38(4):89–92
[9] 胡科敏. 隧道坍塌应急处置和未来科学救援发展趋势[J]. 路基工程,2023(1):43−48.
HU Kemin. Emergency rescue for tunnel collapse and future trends of scientific rescue[J]. Subgrade Engineering,2023(1):43−48.
[10] 袁川贵. 隧道关门塌方自进式救援通道成套装备及技术研究[J]. 铁道建筑技术,2023(3):24−27.
YUAN Chuangui. Research on complete sets of equipment and technology for tunnel closure collapsed self–propelled rescue channel[J]. Railway Construction Technology,2023(3):24−27.
[11] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33.
TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.
[12] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5−9.
WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5−9.
[13] 赵普生,胡俊粉. 井下被困人员救援技术及装备现状分析[J]. 煤炭科学技术,2009,37(8):38−41.
ZHAO Pusheng,HU Junfen. Status analysis on rescue technology and equipment for personnel in difficult in underground mine[J]. Coal Science and Technology,2009,37(8):38−41.
[14] 王振平,刘媛媛,马砺,等. 我国矿山应急救援体系研究探讨[J]. 煤炭技术,2015,34(1):343−346.
WANG Zhenping,LIU Yuanyuan,MA Li,et al. Discussion on Chinese mine emergency rescue system[J]. Coal Technology,2015,34(1):343−346.
[15] 石国领,穆树元,李影平. 隧道抢险救援大口径水平钻机应用研究[J]. 路基工程,2021(6):179−182.
SHI Guoling,MU Shuyuan,LI Yingping. Research on application of large caliber horizontal drilling rig in tunnel rescue[J]. Subgrade Engineering,2021(6):179−182.
[16] 黄小军,贺修安,陈晨. 多级跟管钻进工艺在苏哇龙水电站贡扎滑坡体工程勘察中的应用[J]. 水利水电技术,2009,40(3):47−49.
HUANG Xiaojun,HE Xiuan,CHEN Chen. Application of multi–casting drilling to engineering investigation of Gongzha landslides for Suwalong hydropower station[J]. Water Resources and Hydropower Engineering,2009,40(3):47−49.
[17] 刘送永,徐保龙,秦立学,等. 煤矿巷道掘进长距离快速超前钻探工艺策略及配套机具研究[J]. 煤炭科学技术,2023,51(增刊2):229−239.
LIU Songyong,XU Baolong,QIN Lixue,et al. Study on long–distance fast advance drilling technology strategy and supporting equipment in coal mine roadway tunneling[J]. Coal Science and Technology,2023,51(Sup.2):229−239.
[18] 邹峰. 深层搅拌桩砂土层钻进过程的受力分析[J]. 中国水能及电气化,2024(6):41−46.
ZOU Feng. Force analysis during deep mixing pile drilling in sandy soil layers[J]. China Water Power & Electrification,2024(6):41−46.
[19] 潘德元,方国庆,王杰,等. 基于能量法的跟管钻进最大深度计算及应用[J]. 隧道建设(中英文),2022,42(10):1766−1771.
PAN Deyuan,FANG Guoqing,WANG Jie,et al. Calculation and application of maximum depth of drilling with simultaneous casing based on energy method[J]. Tunnel Construction,2022,42(10):1766−1771.
[20] 郑东,刘卫华,黄达,等. 孤石对大口径水平钻机钻进性能影响研究[J]. 铁道工程学报,2021,38(9):48−53.
ZHENG Dong,LIU Weihua,HUANG Da,et al. Research on the influence of boulder on the drilling performance of large diameter horizontal drilling machine[J]. Journal of Railway Engineering Society,2021,38(9):48−53.
[21] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 给水排水管道工程施工及验收规范:GB 50268—2008[S]. 北京:中国标准出版社,2008.
[22] 张鹏,马保松,曾聪,等. 基于管土接触特性的顶进力计算模型分析[J]. 岩土工程学报,2017,39(2):244−249.
ZHANG Peng,MA Baosong,ZENG Cong,et al. Numerical model for jacking force based on pipe–soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering,2017,39(2):244−249.
[23] 张鹏,谈力昕,马保松. 考虑泥浆触变性和管土接触特性的顶管摩阻力公式[J]. 岩土工程学报,2017,39(11):2043−2049.
ZHANG Peng,TAN Lixin,MA Baosong. Formulae for frictional resistance considering mud thixotropy and pipe–soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering,2017,39(11):2043−2049.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons