Coal Geology & Exploration
Abstract
Objective The inversion of the horizontal electric field component in the grounded-source short offset transient electromagnetic (SOTEM) method using traditional algorithms is prone to fall into local extrema. To address this challenge, this study proposed an improved particle swarm optimization (PSO) algorithm that integrates the center of gravity reverse learning strategy. Methods Based on the center of gravity reverse learning strategy, the improved PSO algorithm can dynamically adjust learning factors and the value of the adaptive inertia weight, thus improving the global search capability and convergence efficiency effectively. The performance of the improved PSO algorithm was verified using the typical three-, five-, and seven-layered geoelectric models constructed in this study.Results and Conclusions The results of this study indicate that for the five- and seven-layered geoelectric models, the damped least squares method yielded average inversion errors of 0.34% and 4.68%, respectively, while the improved PSO algorithm yielded average inversion errors of 0.21% and 0.87%, respectively. This suggests that the improved PSO algorithm significantly improved the identification accuracy of complex geoelectric structures. Under the conditions of multi-layer (≥5) initial inversion intervals and wide search intervals, the improved PSO algorithm yielded average inversion errors of less than 5% for both three- and five-layered geoelectric models, substantiating its effectiveness. Inversion was conducted for the measured data from a certain mining area using the damped least squares method and the improved PSO algorithm. The inversion results demonstrate that the improved PSO algorithm outperformed the damped least squares method, with the inversion results of the improved PSO algorithm agreeing well with the electrical structure of the known ore body. The results of this study will provide theoretical support for improving the resolution of SOTEM in mineral exploration.
Keywords
grounded-source short-offset transient electromagnetic (SOTEM) method, particle swarm optimization (PSO) algorithm, inversion, electric field component Ex
DOI
10.12363/issn.1001-1986.24.11.0702
Recommended Citation
ZHANG Jifeng, CHEN Changjian, LI Yuteng,
et al.
(2025)
"Inversion of electric field component Ex in the SOTEM method based on the improved particle swarm optimization algorithm,"
Coal Geology & Exploration: Vol. 53:
Iss.
4, Article 19.
DOI: 10.12363/issn.1001-1986.24.11.0702
Available at:
https://cge.researchcommons.org/journal/vol53/iss4/19
Reference
[1] 薛国强,陈卫营,周楠楠,等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报,2013,56(1):255−261.
XUE Guoqiang,CHEN Weiying,ZHOU Nannan,et al. Short–offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics,2013,56(1):255−261.
[2] 薛国强,闫述,陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展,2014,29(1):177−181.
XUE Guoqiang,YAN Shu,CHEN Weiying. Research prospect to grounded–wire TEM with short–offset[J]. Progress in Geophysics,2014,29(1):177−181.
[3] 陈卫营,薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探,2015,39(4):775−779.
CHEN Weiying,XUE Guoqiang. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration,2015,39(4):775−779.
[4] 薛国强,陈卫营,武欣,等. 电性源短偏移距瞬变电磁研究进展[J]. 中国矿业大学学报,2020,49(2):215−226.
XUE Guoqiang,CHEN Weiying,WU Xin,et al. Review on research of short–offset transient electromagnetic method[J]. Journal of China University of Mining & Technology,2020,49(2):215−226.
[5] 张继锋,孙乃泉,刘最亮,等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探,2023,51(2):301−316.
ZHANG Jifeng,SUN Naiquan,LIU Zuiliang,et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geology & Exploration,2023,51(2):301−316.
[6] XUE Guoqiang,WU Xin,CHEN Weiying,et al. Grounded–source short offset transient electromagnetic method:Theory and applications in deep mineral exploration[J]. Science China Earth Sciences,2025,68(2):626−638.
[7] 黄仕茂,杨光,王军成,等. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探,2024,48(5):1208−1214.
HUANG Shimao,YANG Guang,WANG Juncheng,et al. Application cases of the short–offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine[J]. Geophysical and Geochemical Exploration,2024,48(5):1208−1214.
[8] 陈卫营,薛国强,赵平,等. 西藏羊八井地热田SOTEM探测及热储结构分析[J]. 地球物理学报,2023,66(11):4805−4816.
CHEN Weiying,XUE Guoqiang,ZHAO Ping,et al. SOTEM exploration and reservoir structure analysis of Yangbajain geothermal field,Xizang[J]. Chinese Journal of Geophysics,2023,66(11):4805−4816.
[9] 陈大磊,陈卫营,郭朋,等. SOTEM法在城镇强干扰环境下的应用:以坊子煤矿采空区为例[J]. 物探与化探,2020,44(5):1226−1232.
CHEN Dalei,CHEN Weiying,GUO Peng,et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration,2020,44(5):1226−1232.
[10] HOU Dongyang,XUE Guoqiang,ZHOU Nannan,et al. Exploration of deep magnetite deposit under thick and conductive overburden with ex component of SOTEM:A case study in China[J]. Pure and Applied Geophysics,2019,176(2):857−871.
[11] 常江浩,薛国强. 电性源短偏移距瞬变电磁场扩散规律三维数值模拟[J]. 地球科学与环境学报,2020,42(6):711−721.
CHANG Jianghao,XUE Guoqiang. Three–dimensional numerical simulation of diffusion law of short–offset grounded–wire transient electromagnetic field[J]. Journal of Earth Sciences and Environment,2020,42(6):711−721.
[12] 陈卫营,薛国强,崔江伟,等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报,2016,59(2):739−748.
CHEN Weiying,XUE Guoqiang,CUI Jiangwei,et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics,2016,59(2):739−748.
[13] 崔江伟,王施智,古瑶. 电性源瞬变电磁法EX分量和HZ分量对比分析[J]. 物探化探计算技术,2019,41(5):623−630.
CUI Jiangwei,WANG Shizhi,GU Yao. Comparative analysis of EX component and HZ component of electrical source transient electromagnetic method[J]. Computing Techniques for Geophysical and Geochemical Exploration,2019,41(5):623−630.
[14] 陈稳,薛国强,陈卫营,等. SOTEM多分量激电响应特性分析[J]. 地球物理学进展,2019,34(5):1859−1865.
CHEN Wen,XUE Guoqiang,CHEN Weiying,et al. Multi–component response of SOTEM with IP effect[J]. Progress in Geophysics,2019,34(5):1859−1865.
[15] RANJIT S,SHALIVAHAN S. Particle swarm optimization:A new tool to invert geophysical data[J]. Geophysics,2007,72(2):F75−F83.
[16] 师学明,肖敏,范建柯,等. 大地电磁阻尼粒子群优化反演法研究[J]. 地球物理学报,2009,52(4):1114−1120.
SHI Xueming,XIAO Min,FAN Jianke,et al. The damped PSO algorithm and its application for magnetotelluric sounding data inversion[J]. Chinese Journal of Geophysics,2009,52(4):1114−1120.
[17] 李明星,肖林通,张倚瑞,等. 瞬变电磁粒子群优化反演研究[J]. 煤炭技术,2014,33(9):302−304.
LI Mingxing,XIAO Lintong,ZHANG Yirui,et al. Research on particle swarm optimization inversion of transient electromagnetic method[J]. Coal Technology,2014,33(9):302−304.
[18] 何一鸣,薛国强,赵炀. 基于量子行为粒子群算法的航空瞬变电磁拟二维反演技术[J]. 地球科学与环境学报,2020,42(6):722−730.
HE Yiming,XUE Guoqiang,ZHAO Yang. Quasi–2D stochastic inversion of airbone transient eletromagnetic data based on quantum–behaved particle swarm optimization algorithm[J]. Journal of Earth Sciences and Environment,2020,42(6):722−730.
[19] 王书明,底青云,夏彤,等. 瞬变电磁数据L–PSO反演方法[J]. 地球物理学报,2022,65(4):1482−1493.
WANG Shuming,DI Qingyun,XIA Tong,et al. Transient electromagnetic method inversion based on Lévy flight–particle swarm optimization[J]. Chinese Journal of Geophysics,2022,65(4):1482−1493.
[20] 董毅,仝景阳,吴佩凝,等. 薄煤层采空区等值反磁通瞬变电磁GAPSO反演研究[J]. 工程地球物理学报,2025,22(1):50−55.
DONG Yi,TONG Jingyang,WU Peining,et al. Research on GAPSO inversion of the opposing coils transient electromagnetic method for goaf detection in thin coal seams[J]. Chinese Journal of Engineering Geophysics,2025,22(1):50−55.
[21] 卫伟,赵弘. 基于粒子群算法的瞬变电磁检测小车结构优化[J]. 石油机械,2024,52(3):117−125.
WEI Wei,ZHAO Hong. Structural optimization of transient electromagnetic detection cart based on particle swarm algorithm[J]. China Petroleum Machinery,2024,52(3):117−125.
[22] 余建国,田宝,周鹏,等. 基于CPSO–ICA的航空瞬变电磁信号去噪方法研究[J]. 信阳师范学院学报(自然科学版),2023,36(4):611−617.
YU Jianguo,TIAN Bao,ZHOU Peng,et al. Research on method of airborne transient electromagnetic signal denoising based on CPSO–ICA[J]. Journal of Xinyang Normal University (Natural Science Edition),2023,36(4):611−617.
[23] 徐正玉,付能翼,周洁,等. 瞬变电磁法非线性优化反演算法对比[J]. 吉林大学学报(地球科学版),2022,52(3):744−753.
XU Zhengyu,FU Nengyi,ZHOU Jie,et al. Comparison of nonlinear optimization inversion algorithms of transient electromagnetic method[J]. Journal of Jilin University (Earth Science Edition),2022,52(3):744−753.
[24] 黄炜伟. 基于粒子群的全空间瞬变电磁二维反演方法研究[J]. 工矿自动化,2021,47(4):79−84.
HUANG Weiwei. Research on two–dimensional inversion method of transient electromagnetic in whole–space based on particle swarm[J]. Industry and Mine Automation,2021,47(4):79−84.
[25] 黄刚,杨海燕,余国锋,等. 圆锥型场源瞬变电磁数据AWPSO算法优化反演[J]. 地球物理学进展,2021,36(4):1521−1530.
HUANG Gang,YANG Haiyan,YU Guofeng,et al. Optimal inversion of transient electromagnetic data with a conical source excitation based on AWPSO algorithm[J]. Progress in Geophysics,2021,36(4):1521−1530.
[26] KAUFMAN A A,KELLER G V. Frequency and transient soundings[M]. Amsterdam:Elsevier,1983.
[27] 蔡盛. 快速汉克尔变换及其在正演计算中的应用[J]. 地球物理学进展,2014,29(3):1384−1390.
CAI Sheng. The fast Hankel transformation and its applications in forward calculations[J]. Progress in Geophysics,2014,29(3):1384−1390.
[28] 朴化荣,殷长春. 利用G–S逆拉氏变换法计算瞬变测深正演问题[J]. 物化探计算技术,1987,9(4):295−302.
PIAO Huarong,YIN Changchun. Calculation of transient E. M. sounding using the Gaver–Stehfest inverse Laplace transform method[J]. Computing Techniques for Geophysical and Geochemical Exploration,1987,9(4):295−302.
[29] 董丽凤,陈阳,巫光福. 动态学习混沌映射的粒子群算法[J]. 计算机应用研究,2019,36(5):1319−1322.
DONG Lifeng,CHEN Yang,WU Guangfu. Chaotic mapping particle swarm optimization algorithm based on variable learning factors[J]. Application Research of Computers,2019,36(5):1319−1322.
[30] RAHNAMAYAN S,JESUTHASAN J,BOURENNANI F,et al. Computing opposition by involving entire population[C]//2014 IEEE Congress on Evolutionary Computation (CEC). Beijing:IEEE,2014:1800–1807.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons