•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Breakthroughs have been achieved in deep coalbed methane (CBM) exploration along the eastern margin of the Ordos Basin, exhibiting the characteristics of local breakthroughs but regional differential CBM production in multiple blocks. The pores and fractures in deep coal reservoirs, serving as the material spaces for fluid occurrence and occurrence, are critical to the differential development across deep CBM blocks. Methods In this study, coal samples were collected systematically from the deep part of the Shenfu block located along the eastern margin of the Ordos Basin. Using conventional tests on porosity, permeability, and physical properties, as well as CO2 adsorption, low-temperature N2 adsorption, mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR), this study explored the Nos. 8 and 9 coal seams as examples to systematically summarize the pore structures and fluid occurrence patterns of deep coal seams. Results and Conclusions Key findings are as follows: (1) Deep coal seams exhibit greatly different pore structures. Coals from the Shenfu block contain both mesopores and macropores, most of which display ink-bottle and open morphologies. It is comprehensively suggested that the medium-rank coals feature pore structures with a slightly weakened cross-scale effect, which is relatively conducive to diffusion and seepage. (2) The medium-rank coals have a reduced adsorption capacity, with isothermal adsorption curves being gentle in the high-pressure part and exhibiting a low desorption efficiency initially. These coals demonstrate elevated water saturation. The high bound water content in mesopores and macropores leads to a decrease in the movable fluid porosity, reducing the storage spaces for free gas. (3) Two gas and water occurrence patterns are observed in the study area: free gas-free water occurrence primarily governed by macropores and microfractures and adsorbed gas-bound water occurrence primarily governed by micropores, mesopores, and macropores. The presence of both occurrence patterns leads to significantly differential CBM production. Specifically, the former is identified as a pattern of rapid and high-yield deep CBM production with characteristics of early gas production, medium to high gas yield, and low water yield. Given the severe damage of stress to medium and large pores and microfractures, it is recommended that appropriate CBM production rates be adopted for gas wells under this pattern to minimize damage to reservoirs and prevent a sharp decline in yield. The second pattern demonstrates the production characteristics of short-term drainage and slow gas production. Slow and continuous CBM production is preferred under this pattern to ensure stable production of gas wells. Additionally, due to a predominance of micropores and mesopores in pores and a high bound water content under this pattern, it is difficult to achieve a high CBM yield of gas wells in the short term. Therefore, it is necessary to explore the possibility of further expanding the fracturing scale to improve the CBM yield of such gas reservoirs.

Keywords

Shenfu block, deep CBM, multi-scale, pore structure, gas and water occurrence pattern, production characteristics

DOI

10.12363/issn.1001-1986.24.03.0182

Reference

[1] 秦勇. 中国深层煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811.

QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811.

[2] 汤达祯,杨曙光,唐淑玲,等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报,2021,46(8):2412−2425.

TANG Dazhen,YANG Shuguang,TANG Shuling,et al. Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society,2021,46(8):2412−2425.

[3] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,51(4):669−682.

XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,51(4):669−682.

[4] 蒋曙鸿,师素珍,赵康,等. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报,2023,41(7):106−113.

JIANG Shuhong,SHI Suzhen,ZHAO Kang,et al. Prospect and development direction of deep coal and coalbed methane exploration[J]. Science & Technology Review,2023,41(7):106−113.

[5] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

[6] 何发岐,董昭雄. 深部煤层气资源开发潜力 :以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277–285.

HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277–285.

[7] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和” 煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438.

KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.

[8] 赵伟波,刘洪林,王怀厂,等. 鄂尔多斯盆地深部本溪组煤孔隙特征及成因探讨以榆林M172井8煤为例[J]. 天然气地球科学,2024,35(2):202−216.

ZHAO Weibo,LIU Honglin,WANG Huaichang,et al. Discussion on pore characteristics and forming mechanism of coal in the deep area,Ordos Basin:Case study of No. 8 coal seam in Well M172 of Yulin area[J]. Natural Gas Geoscience,2024,35(2):202−216.

[9] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.

[10] 聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探,2024,52(2):1−12.

NIE Zhihong,XU Fengyin,SHI Xiaosong,et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):1−12.

[11] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产 “甜点区” 的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in East Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

[12] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.

YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir-controlling mechanism and production-controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.

[13] 刘建忠,朱光辉,刘彦成,等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴—神府区块为例[J]. 石油学报,2023,44(11):1827−1839.

LIU Jianzhong,ZHU Guanghui,LIU Yancheng,et al. Breakthrough,future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing-Shenfu Block[J]. Acta Petrolei Sinica,2023,44(11):1827−1839.

[14] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

[15] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42.

XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42.

[16] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部深层煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780.

XU Fengyin,WANG Chengwang XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780.

[17] 赵兴龙,汤达祯,张岩. 延川南煤层气田深部煤层气藏排采制度的建立与优化[J]. 煤炭科学技术,2021,49(6):251−257.

ZHAO Xinglong,TANG Dazhen,ZHANG Yan. Establishment and optimization of drainage system for deep coalbed methane in South Yanchuan CBM Field[J]. Coal Science and Technology,2021,49(6):251−257.

[18] 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探,2021,49(2):13−20.

CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in Southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):13−20.

[19] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.

[20] 唐淑玲,汤达祯,杨焦生,等. 鄂尔多斯盆地大宁—吉县区块深部煤储层孔隙结构特征及储气潜力[J]. 石油学报,2023,44(11):1854−1866.

TANG Shuling,TANG Dazhen,YANG Jiaosheng,et al. Pore structure characteristics and gas storage potential of deep coal reservoirs in Daning-Jixian Block of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1854−1866.

[21] 卢杰林. 不同煤阶煤孔径结构特征及全孔径拼接表征[D]. 徐州:中国矿业大学,2021.

LU Jielin. Characteristics of pore size structure and full pore size splicing characterization of different coal ranks[D]. Xuzhou:China University of Mining and Technology,2021.

[22] 吴鹏,高丽军,李勇,等. 海陆过渡相岩性频繁互层型页岩气潜力评价方法:以鄂尔多斯盆地临兴区块下二叠统山西组为例[J]. 天然气工业,2022,42(2):28−39.

WU Peng,GAO Lijun,LI Yong,et al. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology:A case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin[J]. Natural Gas Industry,2022,42(2):28−39.

[23] 杨明,柳磊,刘佳佳,等. 中阶煤孔隙结构的氮吸附–压汞-核磁共振联合表征研究[J]. 煤炭科学技术,2021,49(5):67−74.

YANG Ming,LIU Lei,LIU Jiajia,et al. Study on joint characterization of pore structure of middle-rank coal by nitrogen adsorption-mercury intrusion-NMR[J]. Coal Science and Technology,2021,49(5):67−74.

[24] 张雷,边利恒,侯伟,等. 深部煤储层孔隙结构特征及其勘探意义:以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 石油学报,2023,44(11):1867−1878.

ZHANG Lei,BIAN Liheng,HOU Wei,et al. Pore structure characteristics and exploration significance of deep coal reservoirs:a case study of Daning-Jixian block in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1867−1878.

[25] 杨帆,李斌,王昆剑,等. 深部煤层气水平井大规模极限体积压裂技术:以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发,2024,51(2):389−398.

YANG Fan,LI Bin,WANG Kunjian,et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):389−398.

[26] 熊先钺,闫霞,徐凤银,等. 深层煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2,2023,44(11):1854–1867.

XIONG Xianyue,YAN Xia,Xu Fengyin,et al. Analysis of multi-factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1764–1780.

[27] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 岩石毛管压力曲线的测定:GB/T 29171—2012[S]. 北京:中国标准出版社,2013.

[28] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 气体吸附BET法测定固态物质比表面积:GB/T 19587—2017[S]. 北京:中国标准出版社,2017.

[29] IUPAC(International Union of Pure and Applied chemistry). Physical chemistry divison commission on colloid and surface chemistry,subcommittee on characterization of porous solids (tech-nical report)[J]. Pure and Applied Chemistry,1994,66(8):1739−1758.

[30] 王建美,梁卫国,牛栋,等. 超临界CO2作用下无烟煤结构响应特征及高压吸附机理[J]. 天然气工业,2024,44(4):115−125.

WANG Jianmei,LIANG Weiguo,NIU Dong,et al. Structural response characteristics and adsorption mechanism of anthracite coal under supercritical CO2[J]. Natural Gas Industry,2024,44(4):115−125.

[31] 温志辉,方智银,赵延霞,等. 无烟煤分子模型构建及优化方法研究[J]. 中国安全生产科学技术,2024,20(4):94−100.

WEN Zhihui,FANG Zhiyin,ZHAO Yanxia,et al. Research on construction and optimization method of anthracite molecular model[J]. Journal of Safety Science and Technology,2024,20(4):94−100.

[32] 孟艳军,汤达祯,许浩,等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发,2014,41(5):612–617.

MENG Yanjun,TANG Dazhen,XU Hao,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development,2014,41(5):612–617. MENG Yanjun,TANG Dazhen,XU Hao,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development,2014,41(5):671–677.

[33] 刘忠,王宁,张永平,等. 高阶煤储集层气水赋存模式的划分与应用[J]. 新疆石油地质,2021,42(5):572−578.

LIU Zhong,WANG Ning,ZHANG Yongping,et al. Division and application of gas/water occurrence models in high-rank coal reservoirs[J]. Xinjiang Petroleum Geology,2021,42(5):572−578.

[34] 陈世达,汤达祯,侯伟,等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报,2023,44(11):1993−2006.

CHEN SHidang,TANG Dazhen,HOU Wei,et al. Geological particularity and reservoir engineering response of deep CBM[J]. Acta Petrolei Sinica,2023,44(11):1993−2006.

[35] 中华人民共和国国家发展和改革委员会. 岩样核磁共振参数实验室测量规范:SY/T 6490—2007[S]. 北京:石油工业出版社,2008.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.